Wetting and interface microstructure between Sn–Zn binary alloys and Cu

1998 ◽  
Vol 13 (10) ◽  
pp. 2859-2865 ◽  
Author(s):  
Katsuaki Suganuma ◽  
Koichi Niihara ◽  
Takeshi Shoutoku ◽  
Yoshikazu Nakamura

Sn–Zn binary alloys have been examined as a lead-free solder. Zn distributes in a Sn matrix as platelets. The hypoeutectic alloys show two endothermic peaks in DTA, which correspond to the eutectic and the liquidus temperatures. Three reaction layers are formed at the Sn–Zn/Cu interface without containing Sn: the thick γ–Cu5Zn8 adjacent to the solder, the thin β′–CuZn in the middle, and the thinnest layer adjacent to Cu. Although many nonwetting regions and voids are formed at the interface because of poor wetting, soldering at 290 °C can form a rigid interface, and tensile strength reaches about 40 MPa.

2013 ◽  
Vol 634-638 ◽  
pp. 2800-2803 ◽  
Author(s):  
Li Meng Yin ◽  
Yan Fei Geng ◽  
Zhang Liang Xu ◽  
Song Wei

Adopting an accurate micro-tensile method based on dynamic mechanical analyzer (DMA) instrument, the tensile strength of three kinds of copper-wire/solder/copper-wire sandwich structured microscale lead-free solder joints that underwent current stressing with a direct current density of 1.0×104 A/cm2 and loading time of 48 hours were investigated, and compared with those solder joints isothermal aged at 100 0C for 48 hours and as-reflowed condition. These three kinds of microscale columnar solder joints have different volumes, i.e., a same diameter of 300 μm but different heights of 100 μm, 200 μm and 300 μm. Experimental results show that both current stressing and isothermal aging degrades the tensile strength of microscale solder joints, and the solder joint with smaller volume obtains higher tensile strength under same test condition. In addition, current stressing induces obvious electromigration (EM) issue under high current density of 1.0×104 A/cm2, resulting in the decreasing of tensile strength and different fracture position, mode and surface morphology of microscale solder joints. The degree of strength degradation increases with the increasing of joint height when keep joint diameter constant, this is mainly due to that electromigration leads to voids form and grow at the interface of cathode, and solder joints with larger volume may contains more soldering defects as well.


2010 ◽  
Vol 650 ◽  
pp. 91-96 ◽  
Author(s):  
Ke Ke Zhang ◽  
Yao Li Wang ◽  
Yan Li Fan ◽  
Guo Ji Zhao ◽  
Yan Fu Yan ◽  
...  

The effects of Ni on the properties of the Sn-2.5Ag-0.7Cu-0.1Re solder alloy and its creep properties of solder joints are researched. The results show that with adding 0.05wt% Ni in the Sn-2.5Ag-0.7Cu-0.1Re solder alloy, the elongation can be sharply improved without decreasing its tensile strength and it is 1.4 times higher than that of the commercial Sn-3.8Ag-0.7Cu solder alloy. Accordingly the creep rupture life of Sn-2.5Ag-0.7Cu-0.1Re-0.05Ni solder joints is the longest, which is 13.3 times longer than that of Sn-2.5Ag-0.7Cu-0.1Re and is also longer than that of the commercial Sn-3.8Ag-0.7Cu solder alloy. In the same environmental conditions, the creep rupture life of Sn-2.5Ag-0.7Cu-0.1Re-0.05Ni solder joints can sharply decrease with increasing the temperature and stress.


2018 ◽  
Vol 941 ◽  
pp. 2081-2086
Author(s):  
Masaki Yokoi ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji

Tensile and low cycle fatigue properties of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge (mass%) lead-free solder were investigated using miniature size specimens and obtained data were compared to those of Sn-3.0Ag-0.5Cu (mass%). The microstructure of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge consists of dendritic β-Sn phases and ternary eutectic phases surrounding them which are composed of β-Sn, (Cu,Ni)6Sn5 and Ag3Sn. Tensile strength and 0.1% proof stress of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge are superior to those of Sn-3.0Ag-0.5Cu at 25°C and 150°C. However, elongation of it is inferior to that of Sn-3.0Ag-0.5Cu at both temperatures. Fatigue lives of both alloys obey the Manson-Coffin equation and are analogous at 25°C. Although fatigue lives of both alloys decrease at 150°C, the fatigue life of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge is inferior to that of Sn-3.0Ag-0.5Cu. At 150°C, the crack mainly progresses at grain boundaries of recrystallized grains. Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge has several grain boundaies which can be the origin of the crack so that fatigue lives degrade at 150°C.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4443 ◽  
Author(s):  
Chaojun Li ◽  
Yanfu Yan ◽  
Tingting Gao ◽  
Guodong Xu

To obtain Sn-3.0Ag-0.5Cu-xSb (x = 0, 25, 28, and 31) high-temperature lead-free solder antimony was added to Sn-3.0Ag-0.5Cu solder. The microstructure, thermal properties, and mechanical behavior of the solder alloy prepared were studied by using JSM-5610LV scanning electron microscope, Germany STA409PC differential scanning calorimeter, AG-I250KN universal tensile testing machine, and other methods. The SEM-EDS results showed that after adding Sb, SnSb phase was formed in the β-Sn matrix phase. The newly formed SnSb phase and the existing Sb in the solder alloy can inhibit the generation of IMC and refine the IMC layer. The addition of Sb significantly increased the melting temperature of the solder alloy. Among them, the thermal performance of Sn-3.0Ag-0.5Cu-25Sb is the best. The melting temperature of Sn-3.0Ag-0.5Cu-25Sb is 332.91 °C and the solid–liquid line range of Sn-3.0Ag-0.5Cu-25Sb solder alloy is 313.28–342.02 °C. Its pasty range is 28.74 °C, lower than 30 °C, which is beneficial for soldering. The test results of the mechanical behavior of Sn-3.0Ag-0.5Cu-xSb solder alloy show that with the increase of Sb addition, the ultimate tensile strength of the solder alloy also increases. However, the change of the elongation of the solder alloy is the opposite. The ultimate tensile strength of the solder alloy increased from 29.45 MPa of Sn-3.0Ag-0.5Cu solder to 70.81 MPa of Sn-3.0Ag-0.5Cu-31Sb solder. The reason for the increase in the strength of the solder alloy is the reduction of the thickness of IMC and the solid solution hardening effect of Sb.


2012 ◽  
Vol 490-495 ◽  
pp. 3119-3123 ◽  
Author(s):  
Jie Yang ◽  
Ping Sheng Shu ◽  
Xiao Le Feng ◽  
Xiu Yun Hao ◽  
Yu Peng Wang

In the present study, the Effect of rare earths on mechanical properties and wetting behavior of Sn-2.5Ag-0.7Cu solder were investigated. Results indicate that the addition of trace rare earths can improve the properties of Sn-Ag-Cu lead-free solder. The elongation and tensile strength and wetting force of solder can reach the optimal values when rare addition is 0.1wt.%. But excessive rare earths can lead to performance decline. The properties change of the Sn-2.5Ag-0.7Cu solder are attributed to the change of the microstructure caused by trace rare earths additions.


2020 ◽  
Vol 38 (1) ◽  
pp. 34-40
Author(s):  
B. Yavuzer ◽  
D. Özyürek ◽  
T. Tunçay

AbstractThis study investigates microstructures and mechanical properties of the alloys obtained by adding Cu (0.7 % and 0.9 %) and Al (0.7 % and 0.9 %) to lead-free Sn-9Zn eutectic soldering alloy produced by investment casting method. The results show that Cu5Zn8 phase has formed in the structure of Cu added alloys and the Al2O3 phase has formed due to addition of Al. It was found that small and round-shaped Al2O3 phase increased the tensile strength of the new alloy compared to the eutectic alloy. In addition, it was observed that the microhardness of Cu added alloys was lower than that of Sn-9Zn eutectic alloy, but the microhardness of alloys containing Al was higher compared to the other eutectic Sn-9Zn alloy.


2013 ◽  
Vol 2013.21 (0) ◽  
pp. _532-1_-_532-3_
Author(s):  
Hani J NASHRAH ◽  
Yukio MIYASHITA ◽  
Yusof FARAZILA ◽  
Hamdi MOHD ◽  
Yuichi OTSUKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document