Chemical synthesis and characterization of polyaniline-molybdenum trisulfide composite

1999 ◽  
Vol 14 (5) ◽  
pp. 1805-1813 ◽  
Author(s):  
Florence Fusalba ◽  
Daniel Bélanger

A novel polyaniline-molybdenum trisulfide composite has been prepared by chemical polymerization from an acidic (1 M HCl) aqueous solution containing aniline and ammonium tetrathiomolybdate. The presence of molybdenum trisulfide in the polyaniline matrix induces morphological change to the polymer as evidenced by scanning electron micrographs. X-ray diffraction and differential scanning calorimetry indicate that polyaniline-molybdenum trisulfide is slightly less crystalline than polyaniline-HCl. X-ray photoelectron spectroscopy (XPS) and elemental analysis have been used to confirm the presence of molybdenum trisulfide in the polymer matrix. The XPS data also confirm that molybdenum trisulfide and tetrathiomolybdate anions are present with polyaniline to form a new inorganic-organic composite.

2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2015 ◽  
Vol 775 ◽  
pp. 143-146
Author(s):  
Ming Kwen Tsai ◽  
Yueh Chien Lee ◽  
Chia Chih Huang ◽  
Sheng Yao Hu ◽  
Kwong Kau Tiong ◽  
...  

In this work, the CuInS2 nanoparticles are successfully synthesized by microwave-assisted heating technique and further calcined at 400 °C. The morphological, structural, and optical properties of the synthesized CuInS2 nanoparticles are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering, and transmittance measurement, respectively. The SEM image shows the clear particle shape of the calcined CuInS2 nanoparticles. After calcination treatment, the fundamental (112) peak of the XRD spectrum and a broad Raman peak mixed with chalcopyrite and CuAu structures support the improved crystallinity of the calcined CuInS2 nanoparticles.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5552
Author(s):  
Ryota Kudo ◽  
Masahiro Sonobe ◽  
Yoshiaki Chino ◽  
Yu Kitazawa ◽  
Mutsumi Kimura

The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.


2021 ◽  
Vol 234 ◽  
pp. 00106
Author(s):  
Houda Labjar ◽  
Hassan Chaair

The synthesis of apatite silicated Ca10(PO4)6-x(SiO4)x(OH)2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by heat treatment using calcium carbonate CaCO3 and phosphoric acid H3PO4 and silicon tetraacetate SiC8H20O4 (TEOS) in medium of water ethanol, with three different silicate concentrations. After drying, the samples are ground and then characterized by different analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron Microscopy (SEM) and chemical analysis.


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


2012 ◽  
Vol 465 ◽  
pp. 76-79 ◽  
Author(s):  
Shuang Zhan ◽  
Xia Li

The novel Y2O3 nanoflowers were synthesized through a facile hydrothermal method without using any catalyst or template. The phase composition and the microstructure of as-prepared products were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) as well as Fourier transform infrared spectrum. The formation mechanism for the Y2O3 flowers has been proposed.


2015 ◽  
Vol 34 (4) ◽  
Author(s):  
Esma Ahlatcioǧlu ◽  
Bahire Filiz şenkal ◽  
Mustafa Okutan

AbstractIn this work, synthesis and characterization of composite materials based on NanoClay(NC) and boric acid doped PolyAniline (PANI) is studied. PANI was successfully incorporated into NC to form PANI-NC composites. The resulting organic-inorganic hybrid material, PANI-NC was characterized by various physicochemical techniques. Formation of PANI inside the clay tactoid has been confirmed by X-ray diffraction studies (XRD), scanning electron microscope (SEM) and FT-IR. Also, conductivity and physical properties of the PANI-NC composites were investigated.


2012 ◽  
Vol 465 ◽  
pp. 186-191
Author(s):  
Shou Long Gong ◽  
Fang Lin Du

Star-like CuO with submicrometer sizes was fabricated via a simple liquid-phase deposition with the assistant of PVP and Na2MoO4. The as-prepared CuO have been characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The results showed that the as-prepared CuO owned monoclinic structure, the concentrations of PVP, Na2MoO4 and NaOH are very important to the morphology of CuO. The quality of PVP impacts the formation of thin flakes on the skeletons. Meanwhile, the growth of dendritic skeletons was depended on the addition of Na2MoO4, and the effect of NaOH is to control the dimension of CuO structure.


2020 ◽  
Vol 12 (2) ◽  
pp. 254-262
Author(s):  
Kalyani Muninathan ◽  
Emerson Rajamony Navaneetha

At this present task, an attempt done in order to synthesize NiFeCo3O4 ternary thin film electrode by Electrodeposition method. Microstructure of the films studied using X-ray diffraction, energy dispersive X-ray spectroscopy (EDAX) and Field emission (FESEM) scanning electron microscopy. Films Electrochemical property were studied and confirmed with the help of charge discharge techniques using cyclic voltammetry, which confirms that the prepared electrode has excellent electrochemical capacitive behaviour with 757 F g–1 specific capacitance value of at the density in current about 1 mA g–1.


Sign in / Sign up

Export Citation Format

Share Document