Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices

1999 ◽  
Vol 14 (7) ◽  
pp. 2871-2880 ◽  
Author(s):  
Gary G. Tibbetts ◽  
John J. McHugh

This article discusses the mechanical properties of vapor-grown carbon fiber (VGCF)/nylon and VGCF/polypropylene composites. Fibers in the as-produced condition yielded composites with marginally improved mechanical properties. Microscopic examination of these composites clearly showed regions of uninfiltrated fibers, which could account for the unsatisfactory mechanical properties. The infiltration of the fibers by both polymers was improved by carefully ball milling the raw fiber so as to reduce the diameter of the fiber clumps to less than 300 μm. Properties of composites made with ball-milled material were improved in every respect. VGCF reinforcement in nylon slightly improved the tensile strength and doubled the modulus, while VGCF in polypropylene doubled the tensile strength and quadrupled the modulus compared to unreinforced material. Moreover, the composites were sufficiently improved that differences in fiber surface preparation became important. For example, air-etched fibers and fibers covered with low concentrations of aromatics produced polypropylene composites with significantly better mechanical properties than did fibers whose surfaces were heavily coated with aromatics. Both the tensile strength and the modulus of the composites fabricated with clean fibers exceeded theoretical values for composites made with fibers randomly oriented in three dimensions, indicating that the injection-molding process oriented the fibers to some extent.

2020 ◽  
Vol 18 (11) ◽  
pp. 801-805
Author(s):  
Kyung-Soo Jeon ◽  
R. Nirmala ◽  
Seong-Hwa Hong ◽  
Yong-II Chung ◽  
R. Navamathavan ◽  
...  

This manuscript is dealt with the synthesis of short carbon fibers reinforced polycarbonate polymer composite by using injection modeling technique. Four different composite materials were obtained by varying the carbon fibers weight percentage of 10, 20, 30 and 40%. The synthesized carbon fibers/polycarbonate composites were characterized for their morphological, mechanical and thermal properties by means of scanning electron microscopy (SEM), universal testing machine (UTM) and IZOD strength test. The resultant carbon fibers/polycarbonate composites exhibited excellent interfacial adhesion between carbon fibers and polycarbonate resin. The tensile properties were observed to be monotonically increases with increasing carbon fiber content in the composite resin. The tensile strength of carbon fiber/polycarbonate composites with the carbon fiber content 40% were increased about 8 times than that of the pristine polycarbonate matrix. The carbon fibers/polycarbonate composites with 40 wt.% of short carbon fibers exhibited a high tensile strength and thermal conductivity. The incorporation of carbon fiber in to polycarbonate resin resulted in a significant enhancement in the mechanical and the thermal behavior. These studies suggested that the short carbon fiber incorporated polycarbonate composite matrix is a good candidate material for many technological applications.


2007 ◽  
Vol 121-123 ◽  
pp. 1253-1256 ◽  
Author(s):  
Chun Hong Zhang ◽  
Z.Q. Zhang ◽  
H.L. Cao

A novel epoxy/SiO2 hybrid sizing for carbon fiber surface was prepared through sol-gel technique, the structure of the sizing were analyzed, and the effects of the sizing on mechanical properties of carbon fiber composites were also investigated. The analyses by FT-IR and SEM indicated that epoxy/SiO2 hybrid sizing was prepared successfully, SiO2 particles dispersed in the hybrid sizing film homogeneously with nanoscale. The analyses on interlaminar shear strength (ILSS) and impact properties of composites showed that the epoxy/nano-SiO2 hybrid sizing increased ILSS and improved impact properties obviously at the same time.


2015 ◽  
Vol 815 ◽  
pp. 523-528 ◽  
Author(s):  
Rui Hong ◽  
Kun Zhang ◽  
Bao Ying Liu ◽  
Gang Zhang ◽  
Xiao Jun Wang ◽  
...  

The carbon fiber (CF) reinforced polyphenylene sulfide (PPS) composite was modified by aminated polyphenylene sulfide (PPS-NH2) with different mass fractions. The quantified influence of aminated PPS on PPS/CF composites was investigated. The PPS/CF composite with 7wt% PPS-NH2 showed the best mechanical properties. The tensile strength, flexural strength, flexural modulus and impact strength of the composites increased by 12.5%, 13.0%, 38.5% and 31.5%, respectively. PPS-NH2 hardly influenced the melting process of PPS/CF composite. But the crystallization temperature (Tc) of PPS were obviously increased with the present of aminated PPS.


Author(s):  
Toshi Sugahara ◽  
Yan Ma ◽  
Suchalinee Mathurosemontri ◽  
Hiroyuki Hamada ◽  
Yuqiu Yang

Carbon fiber composites are getting more and more widely used in aeronautics and astronautics, vessels, blades of wind turbine generators and so on. In this study, carbon fabric as reinforcement and thermoplastic and thermosetting resin as matrix were used to manufacture carbon fiber prepreg to mold the unidirectional carbon fiber sheet composite (Carbon/PA6 and Carbon/Epoxy). Specially, the multi-tensile tests of 90 degree carbon fiber sheet composite specimens with 150 mm gage length were carried out. After the 1st trial, the longer part of the fracture specimen was chosen as the experimental specimen of 2nd trial tensile test. Similarly, the 3rd trial was investigated. The mechanical properties of 90 specimens including tensile strength, elastic modulus and ultimate stain of polished specimens were investigated in the primary research. Then, the effect of trial on the mechanical properties, the comparison of failure probability distribution of ultimate strain of trials, the relation between gage length and tensile strength, tensile strength and ultimate strain were discussed according to the multi-tensile test result of each specimen. Additionally, the interfacial properties were discussed based on the SEM observation on the fracture surface.


2020 ◽  
Vol 22 (4) ◽  
pp. 885-894 ◽  
Author(s):  
Benaoum Abdelhak ◽  
Mahmoudi Noureddine ◽  
Mahmoudi Hacen

AbstractIn this work, the influence of carbon fiber surface treatment on mechanical properties of unsaturated polyester was investigated. Two approaches have been used in the surface treatment; the first is the desizing of the carbon fiber by the release of the epoxy layer. The second is with the release of epoxy layer and etching the fibers. It was concluded that both methods give good results on adhesion between the matrix and the fibers. It is found that the treatment of carbon fibers is efficient and greatly improves the CFRP handress. The tensile strength of composite materials increases by 30% for etched carbon fibers compared to untreated carbon fibers.SEM images confirm the results obtained.


Author(s):  
Hongsheng Tan ◽  
Xiuxue Guo ◽  
Hao Tan ◽  
Qinglu Zhang ◽  
Changheng Liu ◽  
...  

Abstract In this work, a high fluidity polypropylene prepared with the metallocene catalyst (mPP) was used as matrix, carbon nanotube (CNT) and continuous carbon fiber (CCF) were added to prepare composites, and their mechanical properties, melting and crystallization behavior were investigated. In the mechanical properties, the effects of tension force in the preparation process and compatibilizer maleic anhydride grafted polypropylene (MAPP) on the tensile strength of the composites were researched. The results show that the tensile strength of the composites increases first and then decreases with the increase of tractive force. In addition, the melting and crystallization behaviors and dynamic mechanical behaviors of mPP, CNT/mPP and CNT/CCF/mPP composites were characterized and studied by a differential scanning calorimetry (DSC) and dynamic mechanical analyzer (DMA). The results show that the melting point (Tm ), crystallization temperature (Tc ) and storage modulus (E') of CNT/mPP are all increased by adding 1wt% CNT, especially the Tc is increased by 8.8 ºC. It shows that after CNT was added to mPP as inorganic carbon material, it plays a prominent role in heterogeneous nucleation. After CCF was composited with CNT/mPP, the composites with CCF content of 30 and 42wt% were prepared, and their Tm , Tc , crystallinity (Xc ) and E' were all improved, especially E' was greatly improved, such as the initial E' was increased by 5.64 and 11.74 times. Even at the end of the curve, the E' of the composites with CF is still significantly higher than that of mPP and CNT/mPP. It indicates that adding CCF will greatly improved the deformation resistance and load deformation temperature of mPP.


Sign in / Sign up

Export Citation Format

Share Document