Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments

2001 ◽  
Vol 16 (11) ◽  
pp. 3084-3096 ◽  
Author(s):  
Takeshi Sawa ◽  
Kohichi Tanaka

Nanoindentation is a simple and effective means for evaluating the mechanical properties of thin films. In such circumstances, nanoindentation testers have been developed and commercialized by some companies. In this study, we tested the standard four specimens using six different types of testers and established a method to evaluate the nanoindentation data. The method requires only two correction factors; one is the frame compliance, Cf, of the testers, and the other is the error of the detection of the original surface which includes both the truncation of the indenter apex and the damage of the surface caused by the preloading of the indenter. The latter correction is conducted by adding a correction length, ΔhC, to the measured penetration depth, h. It was found that the values ΔhC increase with decrease in the hardness of material and are very sensitive to the performance of the testers.

1999 ◽  
Author(s):  
Mauro J. Kobrinsky ◽  
Erik R. Deutsch ◽  
Stephen D. Senturia

Abstract Doubly-supported surface-micromachined beams are increasingly used to study the mechanical properties of thin films. Residual stresses in the beams cause significant vertical deflections, which affect the performance of these devices. We present here both experimental results for doubly-supported polysilicon surface-micromachined beams, and an elastic model of the devices that takes into account the compliance of the supports and the geometrical non-linear dependence of the vertical deflections on the stress in the beam. An elastic one-dimensional model was used for the beams, and the response of the supports to forces and moments was obtained using Finite Element Method simulations. The model explains a previously observed gradual increase of the maximum vertical deflections of the beams with increasing length at a given constant residual stress, and, in agreement with experimental observations, predicts two stable states for compressively stressed beams: one with the beam bent up, the other down.


2006 ◽  
Vol 976 ◽  
Author(s):  
Yun-Hee Lee ◽  
Yong-Il Kim ◽  
Hoon-Sik Jang ◽  
Seung-Hoon Nahm ◽  
Ju-Young Kim ◽  
...  

AbstractConventional nanoindentation testing generally uses a peak penetration depth of less than 10 % of thin-film thickness in order to measure film-only mechanical properties, without considering the critical depth for a given thin film-substrate system. The uncertainties in this testing condition make hardness measurement more difficult. We propose a new way to determine the critical relative depth for general thin-film/substrate systems; an impression volume analyzed from the remnant indent image is used here as a new parameter. Nanoindents made on soft Cu and Au thin films with various indentation loads were observed by atomic force microscope. The impression volume calculated from 3D remnant image was normalized by the indenter penetration volume. This indent volume ratio varied only slightly in the shallow regime but decreased significantly when the indenter penetration depth exceeded the targeted critical relative depth. Thus, we determined the critical relative depth by empirically fitting the trend of the indent volume ratio and determining the inflection point. The critical relative depths for Cu and Au films were determined as 0.170 and 0.173, respectively, values smaller than 0.249 and 0.183 determined from the hardness variation of the two thin films. Hence the proposed indent volume ratio is highly sensitive to the substrate constraint, and stricter control of the penetration depth is needed to measure film-only mechanical properties.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3214-3223
Author(s):  
Ricardo Acosta ◽  
Jorge A. Montoya ◽  
Johannes Welling

The tension test parallel-to-fiber in anisotropic materials, such as bamboo, is one of the most important tests because it makes it possible to evaluate mechanical properties used in calculations for different types of stresses. For this type of test there are standards that apply to wood in general, others to bamboo, and other more specific ones that apply to bamboo Guadua angustifolia Kunth. These rules suggest the use of dog bone test specimens. When performing such tests parallel to the fiber direction, failures are observed in undesired zones. This document characterizes and analyzes the possible types of failures. It also evidences the difficulties presented and quantifies them finding that, for 59 failed test pieces, only 18.6% had failures within the desired zones, while the other 81.4% had failures within undesired zones in the tension test parallel to the fiber. Finally, it can be concluded that there are gaps in the rules that influence the variation of the results obtained by different authors. The dog bone test specimens are not recommended for tension tests parallel to the Guadua fiber. Rather, utilization of straight specimens is recommended with a calculated clamping height and the standard equation and protected clamping area.


2013 ◽  
Vol 844 ◽  
pp. 217-220 ◽  
Author(s):  
Uraiwan Sookyung ◽  
Woothichai Thaijaroen ◽  
Norbert Vennemann ◽  
Charoen Nakason

Sodium-montmorillonite (Na-MMT) nanoclay was modified with different types of alkylamine organic modifier including primary and quaternary alkylamines. Influence types of alkylamine on properties of natural rubber/clay nanocomposites was investigated. It was found that organoclays caused improvement of mechanical properties of natural rubber, and accelerated vulcanization reaction with higher degree of crosslinking. In addition, organoclay modified with quaternary alkylamine showed significance cure reversion phenomenon which caused reduction of thermal stability. On the other hand, primary alkylamine modified nanoclay caused improvement of thermal stability of natural rubber. Moreover, stress relaxation was observed at the melting temperature of the modifying agent.


2010 ◽  
Vol 663-665 ◽  
pp. 511-514 ◽  
Author(s):  
Yuan Yuan ◽  
Bing Xie ◽  
Yu Wang

A series of polyimide thin films were prepared successfully based on bis[3,5-dimethyl-4- (4-aminophenoxy)phenyl]methane (BDAPM), 9,9-bis(4-(4-aminophenoxy)phenyl)fluorene (BAOFL) and different dianhydrides. And an interesting result of dielectric property for polyimide thin films was found that the polyimide thin film prepared with 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) exhibited high dielectric constants of 5.7 at 1MHz. Conversely, the other polyimides possessing fluorene groups showed low dielectric constants. The structures and the mechanical properties of polyimide films also proved the reason for results of dielectric properties.


Author(s):  
Naokazu Murata ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Electroplated copper thin films have been used for interconnection of semiconductor devices. Both the mechanical and electrical properties of the films were found to be quite different from those of bulk material, and thus, the reliability of the devices is not so high as to be expected. The main reason for the difference was found to be their micro texture. When the films consist of fine columnar grains with weak grain boundaries, their mechanical properties show strong anisotropy and complicated fracture mode. Thus, the fatigue strength of the electroplated copper thin films was measured under uniaxial stress. The mechanical properties such as the yield stress, fracture elongation and Young’s modulus of each film were quite different from those of bulk copper due to their unique micro structure. The micro texture of each film was observed by using SEM (Scanning Electro Microscope) and SIM (Scanning Ion Microscope). The low-cycle fatigue strength varied drastically depending on their micro texture, while the high-cycle fatigue strength was almost same. The fracture surfaces were observed by SEM after the fatigue test. It was found that there were two fracture modes under the fatigue test. One was a typical ductile fracture, and the other was brittle one even under the fatigue load higher than its yield stress. The crack seemed to propagate in the grains when the ductile fracture occurred since typical striations and dimples were observed clearly on the fractured surfaces. On the other hand, the crack seemed to propagate along grain boundaries of columnar grains when the brittle fracture occurred. No striations or dimples remained on the fractured surfaces. One of the reasons for this brittle fracture can be explained by cooperative grain boundary sliding of the films which consist of fine columnar grains with weak grain boundaries. These results clearly indicated that the fatigue strength of the electroplated copper thin films varies depending on their micro structure. Since the initial micro texture was found to change significantly even after the annealing at temperatures lower than 300°C, the effect of the thermal history of them after electroplating on both their micro texture and fatigue strength was investigated quantitatively. Not only the average grain size, but also the crystallographic structure of the films changed significantly depending on their thermal history, and thus, the fatigue strength of the films varied drastically. It is important, therefore, to control the micro texture of the films for assuring their reliability.


2014 ◽  
Vol 17 (4) ◽  
pp. 65-73
Author(s):  
Thuong Tran Tuyet Vo ◽  
Tuan Anh Dao ◽  
Hang Thi Thu Cu ◽  
Hung Vu Tuan Le

Titanium nitride thin films (TiN) are fabricated by DC magnetron sputtering on different types of substrates such as glass substrates, PET substrates, substrate alloy (AISI 304) and drill steel. In this work we study the effect of distance target - substrate, sputtering time and negative voltage to the crystal structure, mechanical properties and optical films. The properties of thin films were studied by X-ray diffraction method Stylus, UV – Vis method and scanning electron microscopy. Results showed that the distance target - substrate, sputtering time and negative voltage affects the crystalline structure, mechanical properties and optical films. TiN films have been synthesized highly crystalline structure, crystal structure of thin films oriented along the the surface lattice (111), (200) and (311). Besides TiN thin films also have high reflectance in the visible and infrared range, good adhesion, high chemical durability.


1990 ◽  
Vol 188 ◽  
Author(s):  
D. C. H. Yu ◽  
J. A. Taylor

ABSTRACTThe inter-relationship between plasma processing, composition, and mechanical properties of PECVD-SiNx, thin films was investigated. Results showed that by varying the gas feeding ratio of NH3/SiH4N2, one can obtain PECVD-SiNx, films of different composition and streu levels. For high stress films, the deposition rate is low, values of index of refraction and Si/N ratio are small. On the other hand, film density of such films is high; values of Young's modulus and N-H/Si-H relative bond density are large. A model which correlates film stress to that contributed by (1) lattice distortion induced by Si-H and NH bondings, (2) ion bombardment, (3) thermal mismatch between PECVD-SiNx films and silicon substrate, and (4) intrinsic stress introduced during the formation of covalent Si-N bonding is proposed and examined in this work.


2018 ◽  
Vol 7 (2) ◽  
pp. 11 ◽  
Author(s):  
I S Fahim ◽  
N Aboulkhair ◽  
N M Everitt

Chitosan nanocomposite thin films were fabricated using two types of chitosan natural polymer (cross-linked chitosan (CLCS) and non-cross-linked chitosan (NCLCS)), with three different weight percentages nano-fillers (Graphene (G) and fullerene (F)). Nanoindentation tests were performed to investigate the local mechanical properties of the produced nanocomposite in comparison to the unreinforced chitosan thin films. Nano hardness values (H) and indentation modulus (E) were measured using 5 and 10 µm spherical indenters. The addition of nano fillers enhanced the hardness of both types of films with the amount of hardening being directly proportional to the fraction of nano filler added(p<0.001). Crosslinking has also significantly increased the hardness (p< 0.001). The larger indentation returned a lower hardness. The use of different radii nano indenters underlined the indenter size effect due to the differing strain fields. The promising mechanical properties resulting from this research will allow using the fabricated nanocomposites for tissue engineering, biomedicine, drug delivery, electronics, energy, surface coatings and packaging applications.


2016 ◽  
Vol 368 ◽  
pp. 86-90
Author(s):  
Lukáš Šimůrka ◽  
Selen Erkan ◽  
Tuncay Turutoglu

The influence of process parameters on amorphous reactively sputtered silicon nitride thin films is reported in this study. The films were prepared with various argon and nitrogen flows, and sputter power in in-line horizontal coater by DC magnetron reactive sputtering from Si (10% Al) target. Refractive index and mechanical properties like residual stress, hardness and elastic modulus were studied. We show that process pressure has an important influence on mechanical properties of the sputtered film. On the other hand, the nitrogen content is the key factor for the optical properties of the films.


Sign in / Sign up

Export Citation Format

Share Document