Micro Texture Dependence of Mechanical Properties of Electroplated Copper Thin Films Used for Thin Film Interconnection

Author(s):  
Naokazu Murata ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Electroplated copper thin films have been used for interconnection of semiconductor devices. Both the mechanical and electrical properties of the films were found to be quite different from those of bulk material, and thus, the reliability of the devices is not so high as to be expected. The main reason for the difference was found to be their micro texture. When the films consist of fine columnar grains with weak grain boundaries, their mechanical properties show strong anisotropy and complicated fracture mode. Thus, the fatigue strength of the electroplated copper thin films was measured under uniaxial stress. The mechanical properties such as the yield stress, fracture elongation and Young’s modulus of each film were quite different from those of bulk copper due to their unique micro structure. The micro texture of each film was observed by using SEM (Scanning Electro Microscope) and SIM (Scanning Ion Microscope). The low-cycle fatigue strength varied drastically depending on their micro texture, while the high-cycle fatigue strength was almost same. The fracture surfaces were observed by SEM after the fatigue test. It was found that there were two fracture modes under the fatigue test. One was a typical ductile fracture, and the other was brittle one even under the fatigue load higher than its yield stress. The crack seemed to propagate in the grains when the ductile fracture occurred since typical striations and dimples were observed clearly on the fractured surfaces. On the other hand, the crack seemed to propagate along grain boundaries of columnar grains when the brittle fracture occurred. No striations or dimples remained on the fractured surfaces. One of the reasons for this brittle fracture can be explained by cooperative grain boundary sliding of the films which consist of fine columnar grains with weak grain boundaries. These results clearly indicated that the fatigue strength of the electroplated copper thin films varies depending on their micro structure. Since the initial micro texture was found to change significantly even after the annealing at temperatures lower than 300°C, the effect of the thermal history of them after electroplating on both their micro texture and fatigue strength was investigated quantitatively. Not only the average grain size, but also the crystallographic structure of the films changed significantly depending on their thermal history, and thus, the fatigue strength of the films varied drastically. It is important, therefore, to control the micro texture of the films for assuring their reliability.

2010 ◽  
Vol 1249 ◽  
Author(s):  
Murata Naokazu ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

AbstractMicro-texture dependence of both the mechanical and electrical properties of electroplated copper thin films was discussed experimentally considering the change of their micro texture caused by thermal history after the electroplating. Both the static and fatigue strength of the films changed drastically depending on the micro texture and it was found that there were two fatigue fracture modes in the films. One was a typical ductile intragranular fracture and the other was brittle intergranular one. The reason for the variation of the strength of the electroplated copper thin films was attributed to the variation of the average grain size and the characteristics of grain boundaries. In addition, the electrical reliability of the electroplated copper interconnections was discussed under electromigration tests. Though abrupt fracture mode due to the local fusion appeared in the as-electroplated films, the life of the interconnections was improved significantly after the annealing at temperatures high than 200°C. Typical change of the surface morphology of the film, i.e., the formation of voids and hillocks were observed on their surfaces after the annealing. This was also caused by the change of the micro texture from fine grains with porous grain boundaries to coarsened columnar grains with rigid grain boundaries. However, the stress-induced migration appeared in the annealed narrow interconnections, in particular. This was because of high tensile residual stress occurred in the film due to the constraint of the shrinkage of the films by rigid oxide around them. These results clearly indicated that the control of both the micro-texture and residual stress is indispensable for improving the reliability of the interconnectins.


Author(s):  
Naokazu Murata ◽  
Naoki Saito ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Both mechanical and electrical properties of electroplated copper thin films were investigated experimentally with respect to changes in their micro texture. Clear recrystallization was observed after the annealing even at low temperature of about 150°C. The fracture strain of the film annealed at 400°C increased from the initial value of about 3% to 15%, and at the same time, the yield stress of the annealed film decreased from about 270 MPa to 90 MPa. In addition, it was found that there were two fatigue fracture modes in the film annealed at the temperatures lower than 200°C. One was a typical ductile fracture mode with plastic deformation and the other was brittle one. When the brittle fracture occurred, the crack propagated along weak or porous grain boundaries which remained in the film after electroplating. The brittle fracture mode disappeared after the annealing at 400°C. These results clearly indicated that the mechanical properties of electroplated copper thin films vary drastically depending on their micro texture. Next, the electrical reliability of electroplated copper thin film interconnections was discussed. The interconnections used for electromigration (EM) tests were made by damascene process. The width of the interconnections was varied from 1 μm to 10 μm. An abrupt fracture mode due to local fusion appeared in the as-electroplated films within a few hours during the test. Since the fracture rate increased linearly with the increase of square of the applied current density, this fracture mode was dominated by local Joule heating. It seemed that the local resistance of the film increased due to the porous grain boundaries and thus, the local temperature around the porous grain boundaries increased drastically. On the other hand, the life of the interconnections annealed at 400°C was improved significantly. This was because of the increase of the average grain size and the improvement of the quality of grain boundaries in the annealed films. The electrical properties of the electroplated copper films were also dominated by their micro texture. However, the stress migration occurred in the interconnections after the annealing at 400°C. This was because of the high residual tensile stress caused by the constraint of the densification of the films by the surrounding oxide film in the interconnection structures during the annealing. Finally, electroplating condition was controlled to improve the electrical properties. Both the resistance of electromigration and electrical resistivity were improved significantly. However, electromigration of copper atoms still occurred at the interface between the electroplated copper and the thin tantalum (Ta) layer sputtered as base material. Therefore, it is very important to control the crystallographic quality of electroplated copper films and the interface between different materials for improving the reliability of thin film interconnections.


2007 ◽  
Vol 353-358 ◽  
pp. 2954-2957 ◽  
Author(s):  
Hideo Miura ◽  
Kazuhiko Sakutani ◽  
Kinji Tamakawa

The mechanical properties of copper thin films deposited by sputtering and electroplating were compared using tensile test and nano-indentation. Both the Young’s modulus and tensile strength of the films were found to vary drastically depending on the microstructure of the deposited films. The Young’s modulus of the sputtered film was almost same as that of bulk material. However, the Young’s modulus of the electroplated thin film was about a fourth of that of bulk material. The micro structure of the electroplated film was polycrystalline and a columnar structure with a diameter of a few hundred-micron. The strength of the grain boundaries of the columnar grains seemed to be rather week. In addition, there was a sharp distribution of Young’s modulus along the thickness direction of the film. Though the modulus near the surface of the film was close to that of bulk material, it decreased drastically to about a fourth within the depth of about 1 micron. There was also a plane distribution of Young’s modulus near the surface of the film.


Author(s):  
Muneyuki Otani ◽  
Kazuhiko Sakutani ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

The mechanical properties of copper thin films formed by cold-rolling and electroplating were measured using a tensile test and nano-indentation. Both the Young’s modulus and the tensile strength of the films were found to vary drastically depending on the microstructure of the films. The Young’s modulus of the cold-rolled film was almost same as that of the bulk material. However, the Young’s modulus of the electroplated thin film was about a fourth of that of the bulk material. The microstructure of the electroplated film was polycrystalline and a columnar structure with a diameter of a few hundred-micron. The strength of the grain boundaries of the columnar grains seemed to be rather week. Such a columnar structure with porous grain boundaries caused the cooperative grain boundary sliding. As a result, the effective elasticity of the film became rather low and the superplastic deformation of the film appearred under an uni-axial tensile load. In addition, there was a sharp distribution of Young’s modulus along the thickness direction of the film. Though the modulus near the surface of the film was close to that of the bulk material, it decreased drastically to about a half at the depth of 1 μm. There was also a planar distribution of Young’s modulus near the surface of the film.


2010 ◽  
Vol 2010.45 (0) ◽  
pp. 70-71
Author(s):  
Naokazu MURATA ◽  
Kinji TAMAKAWA ◽  
Ken SUZUKI ◽  
Hideo MIURA

Author(s):  
Pornvitoo Rittinon ◽  
Ken Suzuki ◽  
Hideo Miura

Copper thin films are indispensable for the interconnections in the advanced electronic products, such as TSV (Trough Silicon Via), fine bumps, and thin-film interconnections in various devices and interposers. However, it has been reported that both electrical and mechanical properties of the films vary drastically comparing with those of conventional bulk copper. The main reason for the variation can be attributed to the fluctuation of the crystallinity of grain boundaries in the films. Porous or sparse grain boundaries show very high resistivity and brittle fracture characteristic in the films. Thus, the thermal conductivity of the electroplated copper thin films should be varied drastically depending on their micro texture based on the Wiedemann-Franz’s law. Since the copper interconnections are used not only for the electrical conduction but also for the thermal conduction, it is very important to quantitatively evaluate the crystallinity of the polycrystalline thin-film materials and clarify the relationship between the crystallinity and thermal properties of the films. The crystallinity of the interconnections were quantitatively evaluated using an electron back-scatter diffraction method. It was found that the porous grain boundaries which contain a significant amount of vacancies increase the local electrical resistance in the interconnections, and thus, cause the local high Joule heating. Such porous grain boundaries can be eliminated by control the crystallinity of the seed layer material on which the electroplated copper thin film is electroplated.


1999 ◽  
Vol 594 ◽  
Author(s):  
R. Spolenak ◽  
C. A. Volkert ◽  
K. Takahashi ◽  
S. Fiorillo ◽  
J. Miner ◽  
...  

AbstractIt is well known that the mechanical properties of thin films depend critically on film thickness However, the contributions from film thickness and grain size are difficult to separate, because they typically scale with each other. In one study by Venkatraman and Bravman, Al films, which were thinned using anodic oxidation to reduce film thickness without changing grain size, showed a clear increase in yield stress with decreasing film thickness.We have performed a similar study on both electroplated and sputtered Cu films by using chemical-mechanical polishing (CMP) to reduce the film thickness without changing the grain size. Stress-temperature curves were measured for both the electroplated and sputtered Cu films with thicknesses between 0.1 and 1.8 microns using a laser scanning wafer curvature technique. The yield stress at room temperature was found to increase with decreasing film thickness for both sets of samples. The sputtered films, however, showed higher yield stresses in comparison to the electroplated films. Most of these differences can be attributed to the different microstructures of the films, which were determined by focused ion beam (FIB) microscopy and x-ray diffraction.


Author(s):  
Genta Nakauchi ◽  
Shota Akasaki ◽  
Hideo Miura

Abstract The variation of their crystallinity, in other words, the order of atom arrangement of grain boundaries in electroplated gold thin films was investigated by changing their manufacturing conditions. Then, the effect of the crystallinity on both their mechanical and electrical properties was measured by using nano-indentation test and electromigration test. The crystallinity of the gold thin films was varied by changing the under-layer material used for electroplating. Also, the micro texture of gold thin films was evaluated by EBSD (Electron Back-Scatter Diffraction) and XRD (X-Ray Diffraction). It was clarified that the crystallinity of the electroplated gold thin films changed drastically depending on the crystallinity of the under-layer materials and electroplating conditions such as current density and temperature. This variation of the crystallinity should have caused wide variation of mechanical properties of the films. In addition, their mechanical properties such as Young’s modulus and hardness showed wide variation by about 3 times comparing with those of bulk gold. Similarly, the EM resistance of the electroplated gold bumps varied drastically depending on the ratio of porous grain boundaries and their crystallinity. Both the ratio and crystallinity also varied depending on the crystallinity of the under layer and electroplating conditions. The effective lifetime of the gold bumps was successfully predicted by considering both the crystallinity and residual stress of fine gold bumps. The lifetime varied more than 10 times as a strong function of the crystallinity of grain boundaries in the fine bumps. Therefore, it is very important to control the crystallinity of the under-layer for electroplating in order to control the distribution of the mechanical properties and reliability of the electroplated gold thin films.


1987 ◽  
Vol 73 (14) ◽  
pp. 1770-1777 ◽  
Author(s):  
Keijiro HIRAGA ◽  
Toshio OGATA ◽  
Kotobu NAGAI ◽  
Tetsumi URI ◽  
Keisuke ISHIKAWA ◽  
...  

2020 ◽  
Vol 10 (23) ◽  
pp. 8475
Author(s):  
Jan Patrick Sippel ◽  
Eberhard Kerscher

Understanding the mechanisms leading to very high cycle fatigue is necessary to make predictions about the behavior under various conditions and to ensure safe design over the whole lifetime of high-performance components. It is further vital for the development of possible measures to increase the very high cycle fatigue strength. This review therefore intends to give an overview of the properties of the fine granular area that have been observed so far. Furthermore, the existing models to describe the early crack initiation and crack growth within the very high cycle fatigue regime are outlined and the models are evaluated on the basis of the identified fine granular area properties. The aim is to provide an overview of the models that can already be considered refuted and to specify the respective open questions regarding the other individual models.


Sign in / Sign up

Export Citation Format

Share Document