Dependence of the Au/Ni/Si/Ni Contact Properties on the Si-layer Thickness and the Annealing Temperature in p-type GaN Epilayers

2002 ◽  
Vol 17 (5) ◽  
pp. 1019-1023 ◽  
Author(s):  
S.J. Yang ◽  
T.W. Kang ◽  
T.W. Kim ◽  
K.S. Chung

The dependences of the properties of Au/Ni/Si/Ni contacts, deposited on p-GaN epilayers by using electron-beam evaporation, on the Si layer thickness and the annealing temperature were investigated with the goal of producing contacts with low specific resistances. The results of the current–voltage (I–V) curves showed that the lowest specific contact resistance obtained for the Au/Ni/Si/Ni contact with a 1200-Å- thick Si layer on p-type GaN annealed at 700 °C for 1 min in a nitrogen atmosphere was 8.49 × 10-4 Ω cm2. The x-ray diffraction (XRD) measurements on the annealed Au/Ni/Si/Ni/p-GaN/sapphire heterostructure showed that Ni3Si, GaAu, and NiGa layers were formed at the Au/Ni/Si/Ni/p-GaN interfaces. While the intensities corresponding to the Ni3Si layer decreased with increasing annealing temperature above 700 °C, those related to the GaAu and the NiGa layers increased with increasing temperature. These results indicate that the Au/Ni/Si/Ni contacts with 1200-Å-thick Si layers annealed at 700 °C hold promise for potential applications in p-GaN-based optoelectronic devices.

1995 ◽  
Vol 382 ◽  
Author(s):  
Patrick W. Leec ◽  
Geoffrey K. Reeves ◽  
Wei Zhou

ABSTRACTThe specific contact resistance, pc, of Au/Zn/Au, Ni/Zn/Ni/Au, Pd/Zn/Pt/Au and Pd/Mln/Sb/Pd/Au contacts to p-In0.47Ga0.53As/ InP has been measured as a function of layer thickness of Zn or Mn. All of the as-deposited contacts were ohmic, with pc = 1−2 × 10−5 Ω cm2. Increasing thickness of the Zn layer above 200 Å in the Au/Zn/Au contacts resulted in a minor decrease in pc while producing no change in the Ni/Zn/Ni/Au metallization. For the as-deposited Pd/Mn/Pd/Au contacts, the value of pc was independent of thickness of the Mn layer but differences in pc emerged at annealing temperatures of ≥ 250°. The analysis of these structures by RBS has shown an extensive intermixing of the metal layers at an annealing temperature of 450 °. In the Pd/Zn/Pt/Au contacts, the value of pc was reduced to a minimum value of 8 × 10−6 Ω cm2 by annealing at a temperature of 500 °. An examination of the Pd/Zn/Pt/Au configuration by RBS has shown that the Pt layer acted as a barrier for the indiffusion of the Au.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


1999 ◽  
Vol 4 (S1) ◽  
pp. 684-690
Author(s):  
X. A. Cao ◽  
F. Ren ◽  
J. R. Lothian ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

Sputter-deposited W-based contacts on p-GaN (NA∼1018 cm−3) display non-ohmic behavior independent of annealing temperature when measured at 25°C. The transition to ohmic behavior occurs above ∼250°C as more of the acceptors become ionized. The optimum annealing temperature is ∼700°C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700°C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to ∼900°C.


1998 ◽  
Vol 537 ◽  
Author(s):  
X. A. Cao ◽  
F. Ren ◽  
J. R. Lothian ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

AbstractSputter-deposited W-based contacts on p-GaN (NA∼1018cm-3) display non-ohmic behavior independent of annealing temperature when measured at 25°C. The transition to ohmic behavior occurs above ∼250°C as more of the acceptors become ionized. The optimum annealing temperature is ∼700°C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700°C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to ∼900°C.


1997 ◽  
Vol 482 ◽  
Author(s):  
Ja-Soon Jang ◽  
Hyo-Gun Kim ◽  
Kyung-Hyun Park ◽  
Chang-Sub Um ◽  
Il-Ki Han ◽  
...  

AbstractWe report a new Ni/Pt/Au (20/30/80 nm) metallization scheme to achieve a low ohmic contacts to p-type GaN with a carrier concentration of 9.4 × 1016 cm-3. A Mg-doped GaN layer (0.5 μm) was grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). All metal thin films were deposited on the p-GaN layer in an electron-beam evaporation system. Samples were annealed by a rapid thermal annealing (RTA) process at a range of temperatures from 300 °C to 850 °C under a flowing Ar atmosphere. A circulartransmission line model (c-TLM) was employed to calculate the specific contact resistance, and current-voltage (I-V) data were measured with HP4155A. The Ni/Pt/Au contacts without the annealing process showed nearly rectifying characteristics. The ohmic contacts were formed on the samples annealed at 500 °C for 30 sec and the I-V data showed a linear behavior. The specific contact resistance was 2.1 × 10-2 Ωcm2. However with increasing the annealing temperature above 600 °C, ohmic contacts were again degraded. Auger electron spectroscopy (AES) depth profiles were used to investigate the interfacial reactions between the trilayer and GaN. AES results suggested that Pt plays a significant role in forming ohmic contact as an acceptor at the interface. Atomic force microscope (AFM) also showed that the samples with good ohmic contact have very smooth surface.


1995 ◽  
Vol 382 ◽  
Author(s):  
M.W. Cole ◽  
W.Y. Han ◽  
K.A. Jones

ABSTRACTInterfacial microstructure and phase composition of PtTiGePd ohmic contacts to heavily C doped AlGaAs were investigated as a function of annealing temperature. Results of the material analyses were used to explain the specific contact resistances measured for each thermal treatment. Evidence of interdiffusion and compound formation between AIGaAs and Pd was visible in a Ga rich Pd-Ga-As reaction zone prior to heat treatment. This phase is critical for the formation of Ga vacancies, which upon heating are occupied by in-diffusing Ge. As the annealing temperature was elevated, from 530 - 600°C, As began to out-diffuse. This As out-diffusion, which is critical to the formation of good p-type ohmic contacts, contributed to the creation and development of the two phase TiAs/Pd12Ga2Ge5 interfacial region overlying the AlGaAs substrate. In response to the enhanced As out-diffusion at 600°C, the interfacial region became laterally continuous, compositionally uniform, and the specific contact resistance achieved its minimum value. Athigher annealing temperatures, ∼650°C, the electrical measurements degraded in response to intensive chemical diffusion and development of a broad, non-uniform multi-phased interfacial region.


2019 ◽  
Vol 963 ◽  
pp. 485-489
Author(s):  
Monia Spera ◽  
Giuseppe Greco ◽  
Raffaella Lo Nigro ◽  
Salvatore di Franco ◽  
Domenico Corso ◽  
...  

This paper reports on the formation and characterization of Ohmic contacts to n-type and p-type type 3C-SiC layers grown on silicon substrates. In particular, Ohmic contact behavior was obtained either using Ni or Ti/Al/Ni layers annealed at 950°C. The values of the specific contact resistance ρc estimated by means of circular TLM (C-TLM) structures varied in the range ~ 10-3-10-5 Ωcm2, depending on the doping level of the 3C-SiC layer. A structural analysis performed by X-Ray Diffraction (XRD) allowed to identify the main phases formed upon annealing, i.e., Ni2Si and Al3Ni2. The morphology of the reacted contacts depended on that of the underlying substrate. The results can be useful for the development of a variety of devices on the cubic 3C-SiC polytype.


2013 ◽  
Vol 552 ◽  
pp. 162-167
Author(s):  
Min Rui Wang ◽  
Bin Yu ◽  
Yu Xia Wang

The samples of Ag/ITO multilayer films with different Ag insert layer thickness (0.5, 2, 4 nm) were prepared on sapphire and p-GaN substrates. The effects of the Ag layer thickness, annealing temperature and annealing time on the transmittance, sheet resistance and specific contact resistance of Ag/ITO films were investigated. The experiment results show that the transmittance is obviously affected by Ag insert layer thickness. The Current–voltage (I–V) measurements indicate that the sheet resistance and specific contact resistance of Ag/ITO film on p-GaN are lower than those of single ITO film. The samples with Ag(0.5nm)/ITO film on p-GaN produce the low specific contact resistance of ~1.386×10-4Ω•cm2 , low sheet resistance of ~11Ω/sq and high transmittance of ~ 90% at 455nm when the samples are annealed at 600°C for 10 minutes.


2018 ◽  
Vol 924 ◽  
pp. 405-408
Author(s):  
Xue Chao Liu ◽  
Shi Yi Zhuo ◽  
Wei Bin Chen ◽  
Chong Chong Dai ◽  
Er Wei Shi

A sandwich structure of Ni/Nb/4H-SiC was prepared and annealed at different temperature from 750°C to 1050°C. The electrical property and crystalline structure of Ni/Nb electrode was characterized by transmission line method and X-ray diffraction. It was found that the annealing temperature and the thickness of Ni/Nb layer played an important role in obtaining Ohmic contact. A low specific contact resistance of 1.1×10-5Ω·cm2was obtained when the Ni(50nm)/Nb(50nm) electrode was annealed at 1050°C. The Ohmic contact mechanism of Ni/Nb/4H-SiC was proposed.


Sign in / Sign up

Export Citation Format

Share Document