Synthesis and Characterization of Iron Oxide Nanostructured Particles in Na–Y Zeolite Matrix

2004 ◽  
Vol 19 (3) ◽  
pp. 930-936 ◽  
Author(s):  
Maxine Yee ◽  
Iskandar I. Yaacob

Formation of iron oxide nanoparticles within the internal cages of Na–Y zeolites was investigated. Sodium ions within the zeolites were replaced with iron(II) ions. Elemental composition studies showed a significant amount of iron in the exchanged sample. NaOH and dropwise additions of H2O2 at 60 °C triggered formation of zeolite–iron oxide systems. X-ray diffraction (XRD) patterns showed diminishing zeolite peaks along with evolution of peaks corresponding to γ-Fe2O3 and α-Fe2O3 with increasing NaOH concentration. Morphological changes from hexagonal-shaped zeolite to clusters of fine particles were observed under scanning electron microscope. Particles with about 15-nm diameter were detected by transmission electron microscopy. γ-Fe2O3 crystallites of 13.4 nm were determined from the broadening of XRD peaks. The magnetization curves of samples (precipitated using NaOH with concentrations of 2.0 M and above) showed absence of hysteresis and passed through the origin, indicating the particles are superparamagnetic. Gas adsorption–desorption measurement of the system precipitated with 2.0 M NaOH revealed a 26% increase in its specific surface area, indicating the presence of nanometer-sized particles within the zeolites.

2006 ◽  
Vol 306-308 ◽  
pp. 1103-1108
Author(s):  
Abdul Hadi ◽  
Iskandar Idris Yaacob

Nanocrystalline CeO2 has been synthesized at room temperature using water-in-oil (w/o) microemulsion technique. The structure and properties of the nanocrystalline CeO2 were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and gas adsorption desorption measurement. XRD results showed the synthesized CeO2 has a face centered cubic structure with crystallite size of about 5.2 nm. TEM observation also indicated the presence of nanometer sized particles of CeO2. Coarser particles were also observed due to agglomeration. Gas adsorption desorption isotherms showed the behavior of fine particles with mesoporous structure.


2014 ◽  
Vol 14 (3) ◽  
pp. 253-261
Author(s):  
Tutik Setianingsih ◽  
Indriana Kartini ◽  
Yateman Arryanto

Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS) activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C). The carbon-ZBS composite were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively to remove ZBS from the carbon. The carbon products were characterized with nitrogen gas adsorption-desorption method, FTIR spectrophotometry, X-ray diffraction, and Transmission Electron Microscopy. The highest mesopore characteristics is achieved at 100 °C (caramelization) and 450 °C (carbonization), including Vmeso about 2.21 cm3/g (pore cage) and 2.32 cm3/g (pore window) with pore uniformity centered at 300 Å (pore cage) and 200 Å (pore window), containing the surface functional groups of C=O and OH, degree of graphitization about 57% and aromaticity fraction about 0.68.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2003 ◽  
Vol 18 (11) ◽  
pp. 2670-2676 ◽  
Author(s):  
Hendrik K. Kammler ◽  
Sotiris E. Pratsinis

Concurrent synthesis of titania-carbon nanoparticles (up to 52 wt.% in C) was studied in a diffusion flame aerosol reactor by combustion of titanium tetraisopropoxide and acetylene. These graphitically layered carbon-coated titania particles were characterized by high-resolution transmission electron microscopy (HRTEM), with elemental mapping of C and Ti, x-ray diffraction (XRD), and nitrogen adsorption [Brunauer-Emmett-Teller (BET)]. The specific surface area of the powder was controlled by the acetylene flow rate from 29 to 62 m2/g as the rutile content decreased from 68 to 17 wt.%. Light blue titania suboxides formed at low acetylene flow rates. The average XRD crystal size of TiO2 decreased steadily with increasing carbon content of the composite powders, while the average BET primary particle size calculated from nitrogen adsorption decreased first and then approached a constant value. The latter is attributed to the formation of individual carbon particles next to carbon-coated titania particles as observed by HRTEM and electron spectroscopic imaging.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


2018 ◽  
Vol 2017 (1) ◽  
pp. 219-228
Author(s):  
Fengling Liu ◽  
Ziyan Guo ◽  
Hui Qiu ◽  
Xia Lu ◽  
Hua Fang ◽  
...  

Abstract Four kinds of mesoporous carbons, C1-h-w, C2-h-h, C3-s-w, and C4-s-h, with different pore geometries were prepared and characterised, and their adsorption behaviours with aqueous direct yellow 12 (DY-12) were investigated. The results of X-ray diffraction and transmission electron microscopy show that C1-h-w and C3-s-w have wormlike pore characteristics, whereas C2-h-h and C4-s-h have 2-D hexagonally arranged pores. According to the N2 adsorption/desorption results, the specific surface area of C1-h-w (1,378 m2/g) is the largest among the four carbons. The adsorption isotherms could be effectively fitted using the Langmuir model. The maximum adsorption amounts of C1-h-w, C2-h-h, C3-s-w and C4-s-h are 0.968 mmol/g, 0.726 mmol/g, 0.161 mmol/g and 0.156 mmol/g, respectively. The pseudo-second-order rate constants of C1-h-w (39.8 g/(mmol·min)) and C2-h-h (7.28 g/(mmol·min)) are substantially larger than those of C3-s-w (0.0046 g/(mmol·min)) and C4-s-h (0.014 g/(mmol·min)), indicating that an open and interconnected pore geometry is favourable for DY-12 adsorption. Furthermore, DY-12 diffusion in 2-D hexagonally ordered cylindrical pores is superior to that in wormlike pores due to the smoothness of the channels in the former. External mass transfer and intraparticle diffusion both play roles in the adsorption process.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2005 ◽  
Vol 20 (10) ◽  
pp. 2682-2690 ◽  
Author(s):  
Yufang Zhu ◽  
Weihua Shen ◽  
Xiaoping Dong ◽  
Jianlin Shi

A stable mesoporous multilamellar silica vesicle (MSV) was developed with a gallery pore size of about 14.0 nm. A simulative enzyme, hemoglobin (Hb), was immobilized on this newly developed MSV and a conventional mesoporous silica material SBA-15. The structures and the immobilization of Hb on the mesoporous supports were characterized with x-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared, ultraviolet-visible spectroscopy, and so forth. MSV is a promising support for immobilizing Hb due to its large pore size and high Hb immobilization capacity (up to 522 mg/g) compared to SBA-15 (236 mg/g). Less than 5% Hb was leached from Hb/MSV at pH 6.0. The activity study indicated that the immobilized Hb retained most peroxidase activity compared to free Hb. Thermal stability of the immobilized Hb was improved by the proctetive environment of MSV and SBA-15. Such an Hb-mesoporous support with high Hb immobilization capacity, high activity, and enhanced thermal stability will be attractive for practical applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


Sign in / Sign up

Export Citation Format

Share Document