Determination of the effective zero point of contact for spherical nanoindentation

2008 ◽  
Vol 23 (1) ◽  
pp. 204-209 ◽  
Author(s):  
Alexander J. Moseson ◽  
Sandip Basu ◽  
Michel W. Barsoum

Accurate determination of the “zero point,” the first contact between an indenter tip and sample surface, has to date remained elusive. In this article, we outline a relatively simple, objective procedure by which an effective zero point can be determined accurately and reproducibly using a nanoindenter equipped with a continuous stiffness measurement option and a spherical tip. The method relies on applying a data shift, which ensures that curves of stiffness versus contact radius are linear and go through the origin. The method was applied to fused silica, sapphire single crystals, and polycrystalline iron with various indenter sizes to a zero-point resolution of ≈2 nm. Errors of even a few nanometers can drastically alter plots and calculations that use the data, including curves of stress versus strain.

2001 ◽  
Vol 187 (1-3) ◽  
pp. 185-191 ◽  
Author(s):  
Joanne Nı́ Chróinı́n ◽  
Adrian Dragomir ◽  
John G McInerney ◽  
David N Nikogosyan

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 97 ◽  
Author(s):  
Wai Yeong Huen ◽  
Hyuk Lee ◽  
Vanissorn Vimonsatit ◽  
Priyan Mendis

The determination of elastic modulus (E) and hardness (H) relies on the accuracy of the contact area under the indenter tip, but this parameter cannot be explicitly measured during the nanoindentation process. This work presents a new approach that can derive the elastic modulus (E) and contact depth (hc) based on measured experiment stiffness using the continuous-stiffness-measurement (CSM) method. To achieve this, an inverse algorithm is proposed by incorporating a set of stiffness-based relationship functions that are derived from combining the dimensional analysis approach and computational simulation. This proposed solution considers both the sink-in and pile-up contact profiles; therefore, it provides a more accurate solution when compared to a conventional method that only considers the sink-in contact profile. While the proposed solution is sensitive to Poisson’s ratio (ν) and the equivalent indentation conical angle (θ), it is not affected by material plasticity, including yield strength (σy) and work hardening (n) for the investigated range of 0.001 < σy/E < 0.5. The proposed stiffness-based approach can be used to consistently derive elastic modulus and hardness by using stiffness and the load-and-unload curve measured by the continuous-stiffness-measurement (CSM) method.


Author(s):  
Donald L. Gibbon ◽  
Joseph W. Michels

It has been shown that the rate of hydration of obsidian is directly related to the time that hydration has taken place. Thus artifacts made of obsidian exhibit a hydration rim of thickness directly related to the age of the artifact. Accurate determination of the age of obsidian artifacts depends on several factors: 1) the ability of the investigator to accurately measure the thickness of the hydration rim, commonly in the range 1 to 10 microns; 2) the variance of the thickness of the hydration rim over the sample surface; 3) the influence of weathering conditions on the hydration rate. The third point is adequately treated elsewhere. The first two points are the object of this investigation.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


Sign in / Sign up

Export Citation Format

Share Document