Specific interaction characteristics in organoclay nanocomposite of miscible poly(styrene-co-acrylonitrile) and poly(vinyl chloride) blend

2008 ◽  
Vol 23 (4) ◽  
pp. 1168-1174 ◽  
Author(s):  
Sang-Kyun Lim ◽  
Eun-Hee Lee ◽  
In-Joo Chin

We propose a new method for the preparation of the polymer/organoclay nanocomposite, termed the solution and melt mixing (SOAM) method, where the polymer and clays are first blended in solution, and subsequently the mixture is further blended in the melt. We prepared the ternary nanocomposite systems of poly(styrene-co-acrylonitrile) (SAN), poly(vinyl chloride) (PVC) and Cloisite25A clays (C25A) by solution blending as well as by the SOAM method. The C25A content in the nanocomposite was optimized by analyzing the x-ray diffraction (XRD) data of binary mixtures (SAN/C25A and PVC/C25A nanocomposites). The values of the interaction parameter (χab) were calculated by using the molar attraction constants of the specific functional groups derived from Hoy’s table. While PVC and C25A were shown to be highly compatible, SAN and C25A were less compatible. XRD data and transmission electron microscopy observations indicated that the SAN/PVC/C25A nanocomposites had at least partially exfoliated structures. The tensile modulus and the elongation at break of the nanocomposites prepared by the SOAM method were higher than those prepared by simple solution blending.

2005 ◽  
Vol 13 (4) ◽  
pp. 371-384 ◽  
Author(s):  
Shaohui Wang ◽  
Zonglin Peng ◽  
Yong Zhang ◽  
Yinxi Zhang

Butadiene rubber (BR)/organoclay nanocomposites were prepared by direct melt mixing of BR and clay modified with different primary and quaternary ammonium salts. BR/pristine clay composite and BR/organoclay nanocomposites were analysed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The vulcanization characteristics and the mechanical properties of the BR/pristine clay and BR/organoclay composites were investigated. The results showed that the interlayer distance of the organoclays was expanded, which indicated that intercalated BR/organoclay nanocomposites had been prepared. Organoclay effectively accelerated the vulcanization of BR, which was attributed to the intercalatant used to modify the clay. The tensile strength, elongation at break and tear strength of BR/organoclay nanocomposites are much higher than those of gum BR vulcanizate and BR/pristine clay composites. The organoclay modified with dimethyl dihydrogenated tallow ammonium chloride (DDAC) gave the best reinforcement effect in BR of all the organoclays.


2005 ◽  
Vol 13 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Hua Zheng ◽  
Yong Zhang ◽  
Zonglin Peng ◽  
Yinxi Zhang

Ethylene-propylene-diene rubber (EPDM)/organic montmorillonite (OMMT) nanocomposites were prepared through a melt-mixing process in an internal mixer. The nanoscale dispersion of OMMT in the EPDM matrix was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), relating to an exfoliated morphology. The effects of OMMT content on the mechanical properties, curing behaviour, optical properties and thermal properties of the EPDM/OMMT nanocomposites were studied. The experimental results showed that OMMT had good reinforcement on the EPDM vulcanizates. The tensile strength and tear stress of the EPDM/OMMT nanocomposites significantly increased with increasing OMMT content. When the OMMT content was 15 phr, the tensile strength and elongation at break reached 19.8 MPa and 540%, respectively. The EPDM/OMMT nanocomposite cured by 2,5-dimethyl-2, 5-bis (tert-butyl peroxy) hexane was semi-transparent and the OMMT content had little influence on the curing behaviour of the nanocomposites. The increases in the glass transition temperature and thermal decomposition temperature were observed in the nanocomposites and were supposed to be related with the nanoscale dispersion of the OMMT and the strong interaction between EPDM and OMMT. Moreover, the permeability of oxygen for the EPDM/OMMT nanocomposites was reduced remarkably.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Elnaz Esmizadeh ◽  
Ghasem Naderi ◽  
Mir Hamid Reza Ghoreishy ◽  
Gholam Reza Bakhshandeh

Abstract In this article, poly(vinyl chloride) (PVC)/acrylonitrile butadiene rubber (NBR)/clay nanocomposites were melt-mixed using the computerized Brabender plasticorder. During preparation of the nanocomposites self-crosslinking (crosslinking without aid of any crosslinking agent) occurs and affects all properties of a sample. The extent of crosslinking reaction depends on the processing temperature, rotor speed and mixing temperature and it increased with increasing each of mixing parameters. The mechanism of the self-crosslinking reaction was examined by the Fourier transform infrared spectroscopy test. The morphology of the materials was characterized using X-ray diffraction and scanning electron microscope. The swelling test and tensile test were applied to distinguish the effects of self-crosslinking phenomena on physical properties of NBR/PVC nanocomposites. Dynamic mechanical thermal analysis tests of nanocomposites were also performed to study the physical properties, such as glass transition temperature (T g). The results showed that the crosslinking reaction made a material more strong with high modulus and tensile strength. Thus, it can be deduced that crosslinks convert the NBR/PVC nanocomposites to stiffer materials that are less penetrable by the solvent. The results drawn from the loss tangent (tan δ) curves of nanocomposite samples can be used as further evidence for the above conclusions.


Author(s):  
Jumaa Aseeri - Waffa Mekhamer -  Naser Alandis

Polystyrene and poly (vinyl chloride) (PS/PVC) were prepared via solvent casting method with different weight ratios of PS/PVC:  (100/0, 90/10, 80/20, 10/90 and 0/100) to investigate their miscibility. We have studied the morphology of blend PS90/PVC10 (Pd1) with different content (1, 3, 10 %) of organoclay (MM). Cetylpyridinium chloride (CPC) is used to modify the clay sample after saturating its surface with Na+ ions. Fourier transform infrared (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the clay sample before and after modification by CPC. The blend miscibility has been confirmed by FTIR, XRD, differential scanning calorimetry (DSC) studies.  The prepared nanocomposites were characterized using FTIR, DSC, TEM and scanning electron microscope (SEM). We observed that MM have a significant effect on improvement the miscibility of PS/PVC blends. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA).


2020 ◽  
Vol 26 (2) ◽  
pp. 62-69
Author(s):  
Farida Ali ◽  
Tuti I. Sari ◽  
Andi A. Siahaan ◽  
Al-Kautsar D. Arya ◽  
Tri Susanto

Penelitian ini untuk mengetahui pengaruh penambahan Natural Rubber (NR) dan Epoxidation Natural Rubber (ENR-46) dengan kompatibiliser Chlorprene Rubber (CR) pada aplikasi kompon termoplastik Poly Vinyl Chloride (PVC) dan Nitrile Butadiene Rubber (NBR), variabel penelitian meliputi ENR-46/PVC/NBR/CR, NR/PVC/NBR/CR dan CR-NR/PVC/NBR, CR-ENR-46/PVC/NBR. Parameter pengujian sifat fisik-mekanik : Hardness (Shore A), Tensile Strength (Mpa), Elongation at Break (%) dan ketahanan terhadap pelarut minyak (n-Pentane, Toluene, Hexane dan Pertalite). Hasil penelitian didapatkan untuk sifat fisik-mekanik, semakin banyak penambahan NR Kekerasan kompon termoplastik akan menurun, Tensile Strength dan Elongation at Break kompon akan meningkat begitu juga dengan CR-NR. Tetapi berbanding terbalik hasilnya untuk ENR-46 dan CR-ENR-46. Pengujian Ketahanan terhadap pelarut minyak semakin banyak penambahan ENR-46 Ketahanan kompon termoplastik terhadap pelarut akan meningkat, hasil yang sama juga pada CR-ENR-46. Tetapi berbanding terbalik hasilnya dengan penambahan NR dan CR-NR pada kompon termoplastik.


Polymer ◽  
1990 ◽  
Vol 31 (9) ◽  
pp. 1615-1622 ◽  
Author(s):  
Saul J. Guerrero ◽  
Hector Veloso ◽  
Ernani Randon

2018 ◽  
Vol 36 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Sunil S Suresh ◽  
Smita Mohanty ◽  
Sanjay K Nayak

The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.


2014 ◽  
Vol 34 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Haydar U. Zaman ◽  
Dalour Hossen Beg

Abstract In the present investigation, low density polyethylene (LDPE)/organoclay nanocomposites with various clay contents (1–7 wt%) were prepared via a melt mixing technique, using two different compatibilizers with various contents; low molecular weight trimethoxysilyl-modified polybutadiene (Organosilane) and low molecular weight oxidized polyethylene (OxPE). The effects of incorporation of compatibilizers and clay contents on the mechanical and thermal properties of the nanocomposites were investigated. The dispersibility of silicate clay in the nanocomposites was investigated by transmission electron microscopy (TEM). It was found that organosilane yielded better clay dispersion and a more exfoliated structure compared with the OxPE. Rheological behavior of the samples was examined by a dynamic oscillatory rheometer in the linear viscoelastic region. The organosilane compatibilized system conferred higher tensile strength, yield strength and tensile modulus than those of an uncompatibilized system, and even higher than those of the OxPE compatibilized case. The crystallization behaviors of uncompatibilized and compatibilized nanocomposites were investigated using differential scanning calorimetry (DSC). DSC results indicated that the addition of compatibilizers increased the crystallization temperature (Tc) as a result of heterogeneous nucleation effect of clay on LDPE.


Sign in / Sign up

Export Citation Format

Share Document