Effect of film thickness on the structural and electrical properties of Ga-doped ZnO thin films prepared on glass and Al2O3 (0001) substrates by RF magnetron sputtering method

2009 ◽  
Vol 24 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Seung Wook Shin ◽  
S.M. Pawar ◽  
Tae-Won Kim ◽  
Jong-Ha Moon ◽  
Jin Hyeok Kim

Thin films of Ga-doped ZnO (GZO) were prepared on glass and Al2O3 (0001) substrates by using RF magnetron sputtering at a substrate temperature of 350 °C, RF power of 175 W, and working pressure of 6 mTorr. The effect of film thickness and substrate type on the structural and electrical properties of the thin films was investigated. X-ray diffraction study showed that GZO thin films on glass substrates were grown as a polycrystalline hexagonal wurtzite phase with a c-axis preferred, out-of-plane orientation and random in-plane orientation. However, GZO thin films on Al2O3 (0001) substrates were epitaxially grown with an orientation relationship of . The structural images from scanning electron microscopy and atomic force microscopy showed that the GZO thin films on glass substrates had a rougher surface morphology than those on Al2O3 (0001) substrates. The electrical resistivity of 1000 nm-thick GZO thin films grown on glass and Al2O3 (0001) substrates was 3.04 × 10−4 Ωcm and 1.50 × 10−4 Ωcm, respectively. It was also found that the electrical resistivity difference between the films on the two substrates decreased from 9.48 × 10−4 Ωcm to 1.45 × 10−4 Ωcm with increasing the film thickness from 100 nm to 1000 nm.

2011 ◽  
Vol 194-196 ◽  
pp. 2305-2311
Author(s):  
Ying Ge Yang ◽  
Dong Mei Zeng ◽  
Hai Zhou ◽  
Wen Ran Feng ◽  
Shan Lu ◽  
...  

In this study high quality of Al doped ZnO (ZAO) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature in order to study the thickness effect upon their structure, electrical and optical properties. XRD results show that the films are polycrystalline and with strongly preferred (002) orientation perpendicular to substrate surface whatever the thickness is. The crystallite size was calculated by Williamson-Hall method, while it increases as the film thickness increased. The lattice stress is mainly caused by the growth process. Hall measurements revealed electrical parameter very dependent upon thickness when the thickness of ZAO film is lower than 700 nm. The resistivity decreased and the carrier concentration and Hall mobility increases as the film thickness increased. When film thickness becomes larger, only a little change in the above properties was observed. All the films have high transmittance above 90% in visible range. Red shift of the absorption edge was observed as thickness increased. The optical energy bandgap decreased from 3.41eV to 3.30 eV with the increase of film thickness.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


2021 ◽  
Author(s):  
Chunhu Zhao ◽  
Junfeng Liu ◽  
Yixin Guo ◽  
Yanlin Pan ◽  
Xiaobo Hu ◽  
...  

Abstract Aluminum doped ZnO thin films (AZO), which simultaneously transmit light and conduct electrical current, are widely applied in photovoltaic devices. To achieve high performance AZO thin films, the effects of RF magnetron sputtering conditions on the optical and electrical properties of the films has been explored. The optimized AZO thin films exhibit strong (002) orientated growth with hexagonal wurtzite structure. The minimum resistivity of 0.9Í10-3 Ω·cm, the highest carrier concentration of 2.8Í1020 cm-3, the best Hall mobility of 22.8 cm2·(V·s)-1 and average transmittance above 85% can be achieved at the optimum deposition condition of 0.2 Pa, 120 W and 200 °C. Considering the single parabolic band model, the bandgap shift by carrier concentration of the films can be attributed to the Burstein-Moss effect. The results indicate that RF magnetron sputtered AZO thin films are promising for solar cell applications relying on front contact layers.


2011 ◽  
Vol 25 (07) ◽  
pp. 995-1003 ◽  
Author(s):  
L. P. PENG ◽  
L. FANG ◽  
X. F. YANG ◽  
Q. L. HUANG ◽  
F. WU ◽  
...  

In-doped zinc oxide ( ZnO:In ) thin films with thickness from 157 nm to 592 nm have been deposited on glass substrates by radio frequency (RF) magnetron sputtering. The effect of the film thickness on the structural, electrical and optical properties of ZnO:In thin films has been investigated. It is found that the films are hexagonal wurtzite structure with c-axis perpendicular to the substrate, and with increasing thickness, the crystallinity, the grains size and the conductivity of the films increases, but the strains along c-axis and the transmittance decrease. The decrease of the resistivity in a thicker film is attributed to the slight increase of the carrier concentration and the significant increase of Hall mobility. The transmittance of all the films is over 80% in the visible region (400–800 nm) and the band gap decrease with the increase of film thickness. The film with the thickness of around 303 nm has the resistivity of 6.07 × 10-3 Ω⋅ cm and the transmittance of 90% in the visible range. Based on the good conductivity and high transmittance, the ZnO:In films prepared by magnetron sputtering can be regarded as a potential transparent electrode.


Sign in / Sign up

Export Citation Format

Share Document