Microstructural characterization and crystallization kinetics of (1-x)TeO2-0.10CdF2-xPbF2 (x = 0.05, 0.10, and 0.15 mol) glasses

2009 ◽  
Vol 24 (10) ◽  
pp. 3087-3094 ◽  
Author(s):  
Demet Tatar ◽  
M. Lutfi Öveçoğlu ◽  
Gonul Özen ◽  
Scott A. Speakman

Microstructural characterization and crystallization kinetics of (1-x)TeO2-0.10CdF2-xPbF2 (x = 0.05, 0.10, and 0.15 in molar ratio) glasses were investigated using differential thermal analysis (DTA), x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy/energy dispersive spectrometer (SEM/EDS), and absorbance spectroscopy techniques. For all of the glass compositions only one exothermic peak was observed on the DTA plots, and on the basis of the XRD and Raman spectrophotometry investigations it was understood that they refer to the formation of the α-TeO2 phase. SEM/EDS investigations revealed the presence of oriented needle-like α-TeO2 crystals in the 0.85TeO2-0.10CdF2-0.05PbF2 glass, rectangle-shaped α-TeO2 crystals in the 0.80TeO2-0.10CdF2-0.10PbF2 glass, and disoriented needle-like crystals in the 0.75TeO2-0.10CdF2-0.15PbF2 glass. DTA analyses were carried out at different heating rates, and the Avrami constants for all of the glasses were approximately 1. The activation energy calculations and SEM investigations demonstrated that the formation of the crystalline phases occurred via surface crystallization mechanism for all of the glasses. Activation energies for crystallization in these glasses were determined from the modified Kissinger plots and were found to vary between 67 and 183 kJ/mol. The addition of PbF2 as a network modifier into the glass structure contributes to the intensity of the Raman peaks change and forced the transition of the glass network from TeO4 trigonal bipyramid units to the TeO3 trigonal pyramid structural units.

2016 ◽  
Vol 881 ◽  
pp. 83-88 ◽  
Author(s):  
Rafael Bianchini Nuernberg ◽  
Oscar Rubem Klegues Montedo

This work aims to investigate the crystallization kinetics of β-spodumene/cordierite glass-ceramics. Thus, three glasses with compositions based predominantly on cordierite (C), β-spodumene (L) and in a molar ratio 1:1 of both phases (CL) were prepared. The kinetics parameters such as activation energy for crystallization (ranging from 160 to 358 kJ/mol) and Avrami exponent (ranging from 1.4 to 10.7) were determined by means of non-isothermal methods using differential scanning calorimetry (DSC). Additionally, the samples were crystalized according to DSC analyses and characterized by using x-ray diffraction (XRD). The main detected crystalline phases were β-spodumene to the glass L, cordierite to the glass C and β-quartz, mulite and spinel to the glass CL. Considering the thermal and electrical properties of these crystalline phases, these glass-ceramics have potential use for LTCC (Low Thermal Co-fired Ceramics) applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Viet H. Nguyen ◽  
Oanh T. H. Nguyen ◽  
Dina V. Dudina ◽  
Vinh V. Le ◽  
Ji-Soon Kim

In this work, the effect of a slight change in the composition of the Al-Fe amorphous alloys (from Al84Fe16to Al82Fe18) and the substitution of Y for Al (2 at.%) on their crystallization kinetics was studied. According to the X-ray diffraction analysis, powders of the Al84Fe16, Al82Fe18, and Al82Fe16Y2alloys with a fully amorphous structure were formed after 100 h of mechanical milling of the mixtures of the elemental powders. The crystallization behavior of the alloys was also studied by transmission electron microscopy. Upon heating up to a temperature of the first exothermic peak,α-Al crystals precipitated from the amorphous Al84Fe16matrix. During crystallization of the Al82Fe18alloy, crystals of the Al6Fe intermetallic compound formed along withα-Al crystals. Substitution of Y for 2 at.% of Al in the Al82Fe16Y2alloy made crystallization of the alloy more complicated:α-Al, Al6Fe, and Fe4Y crystals coexisted with an amorphous phase. The activation energies corresponding to the first crystallization event of the alloys were calculated using the Kissinger and Ozawa methods. The values obtained by these two methods were in good agreement with each other and the same trends of changing with the alloy composition were observed. The Avrami exponentnwas determined from the Johnson-Mehl-Avrami equation and showed that crystallization at the first stage is interface-controlled growth for all the three powder alloys studied.


2014 ◽  
Vol 32 (3) ◽  
pp. 385-390
Author(s):  
Aysel Kantürk Figen ◽  
Bilge Coşkuner ◽  
Sabriye Pişkin

AbstractIn the present study, hydrogen desorption properties of magnesium hydride (MgH2) synthesized from modified waste magnesium chips (WMC) were investigated. MgH2 was synthesized by hydrogenation of modified waste magnesium at 320 °C for 90 min under a pressure of 6 × 106 Pa. The modified waste magnesium was prepared by mixing waste magnesium with tetrahydrofuran (THF) and NaCl additions, applying mechanical milling. Next, it was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques in order to characterize its structural properties. Hydrogen desorption properties were determined by differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates (5, 10, and 15 °C/min). Doyle and Kissenger non-isothermal kinetic models were applied to calculate energy (Ea) values, which were found equal to 254.68 kJ/mol and 255.88 kJ/mol, respectively.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1377-1382 ◽  
Author(s):  
SEULKI PARK ◽  
JINMYUNG CHOI ◽  
BONGGYU PARK ◽  
IKMIN PARK ◽  
YONGHO PARK ◽  
...  

Hypereutectic Al - Si alloys with fine and evenly distributed Si precipitates have superior mechanical properties In this study, hypereutectic Al - Si alloy powders which contained 15 and 20wt% Si were prepared by a gas atomization process. 1, 3 and 5wt% AlN particles were blended with the Al - Si alloy powders using turbular mixer. The mixture was consolidated by Hot Press at 550°C for 1h under 60MPa. Relative density of the sintered samples was about 98% of theoretical density. This study was investigated by two ways. One is the effect of reinforcement weight fraction and the other is the effect of Silicon contents on the mechanical properties of the composite. Microstructural characterization and phase evaluation were carried out using X-ray Diffraction, Scanning Electron Microscopy equipped with Energy Dispersive Spectrometer. The results showed that the smaller the reinforcement particle size was and the better its distribution was, the higher ultimate tensile strength and hardness were.


2017 ◽  
Vol 898 ◽  
pp. 657-665
Author(s):  
Dao Zhang ◽  
Wang Shu Lu ◽  
Xiao Yan Wang ◽  
Sen Yang

The non-isothermal crystallization kinetics of Mg61Zn35Ca4 glassy alloy prepared via melt-spinning were studied by using isoconversion method. The crystalline characterization of Mg61Zn35Ca4 was examined by X-ray diffraction. Different scanning calorimeter was used to investigate the non-isothermal crystallization kinetics at different heating rates (3-60 K/min). The calculated value of Avrami exponent obtained by Matusita method indicated that the crystalline transformation for Mg61Zn35Ca4 is a complex process of nucleation and growth. The Kissinger-Akahira-Sunose method was used to investigate the activation energy. The activation energy of crystallization varies with the extent of crystallization and hence with temperature. The Sestak-Berggren model was used to describe the non-isothermal crystallization kinetics.


1997 ◽  
Vol 36 (5) ◽  
pp. 629-641 ◽  
Author(s):  
V. Rossi Albertini ◽  
G. B. Appetecchi ◽  
R. Caminiti ◽  
F. Croce ◽  
F. Cilloco ◽  
...  

2014 ◽  
Vol 960-961 ◽  
pp. 161-164 ◽  
Author(s):  
Juan Mu ◽  
Hai Feng Zhang

Glass forming ability and crystallization kinetics of Al-Mg-Ni-La alloys have been investigated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The maximum thickness achievable in glasses of Al76Mg11Ni8La5and Al69Mg18Ni8La5ribbons were 200 and 120 μm, respectively. The crystallization temperature and peak temperature indicated by DSC measurements displayed dependence on the heating rate during continuous heating, and were coincident with Lanoka’s relationship. The activation energies for the crystallization reactionExwere obtained from the Kissinger’s equation. The results show the Mg addition is beneficial to the thermal stability of the amorphous phase.


1993 ◽  
Vol 321 ◽  
Author(s):  
L. T. Shi ◽  
E. J. M. O'Sullivan

ABSTRACTIn order to understand thickness and interfacial effects on the crystallization kinetics of amorphous solids, Ni(P) thin films electrolessly deposited on Cu seed layers were annealed at constant heating rates or at constant temperatures in a DSC to obtain activation energies andAvrami exponents. It was found that the activation energy of crystallization in Ni(P) changes asa function of sample thickness when the sample thickness is less than 1.0 μm. Furthermore, the Avrami exponent was found to change not only as a function of thickness but also as a function of annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document