Elastic and Anelastic Behavior of Materials in Small Dimensions

MRS Bulletin ◽  
2002 ◽  
Vol 27 (1) ◽  
pp. 26-29 ◽  
Author(s):  
Shefford P. Baker ◽  
Richard P. Vinci ◽  
Tomás Arias

AbstractUnder certain circumstances, decreasing the dimensions of a material may lead to elastic or anelastic properties that diverge from bulk behavior. A distinction is made between elastic deformation, for which bond rearrangements are not required, and anelastic behavior, which involves reversible deformation due to defect motion. Elastic deformation (due to bond stretching) remains structure-insensitive down to near-atomic length scales, and only small deviations are expected (of the order of 10%). More significant deviations can be observed in special cases, which are described in the article. However, elastic moduli that are much lower than expected are sometimes seen, even in careful experiments. It now appears that this behavior may be explainable by time-dependent anelastic relaxation mechanisms. In contrast to purely elastic behavior, anelastic behavior is very sensitive to microstructure and is found to be common and often significant when things become small.

2000 ◽  
Vol 649 ◽  
Author(s):  
G. Feng ◽  
A.H.W. Ngan

ABSTRACTDuring the unloading segment of nanoindentation, time dependent displacement (TDD) accompanies elastic deformation. Consequently the modulus calculated by the Oliver-Pharr scheme can be overestimated. In this paper we present evidences for the influence of the measured modulus by TDD. A modification method is also presented to correct for the effects of TDD by extrapolating the TDD law in the holding process to the beginning of the unloading process. Using this method, the appropriate holding time and unloading rate can be estimated for nanoindentation test to minimise the effects of TDD. The elastic moduli of three materials computed by the modification method are compared with the results without considering the TDD effects.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Dinesh Varshney ◽  
Dinesh Choudhary

In this paper, we develop a theoretical model for quantitative analysis of temperature-dependent heat capacity calculation of the magnetoresistance compounds RMnO 3 ( R = La , Nd ). The results on heat capacity obtained by us are in good agreement with the measured values. An effective interionic interaction potential (EIoIP) with the long-range Coulomb, van der Waals (vdW) interaction and short-range repulsive interaction up to second neighbor ions within the Hafemeister and Flygare approach was formulated to estimate the Debye and Einstein temperature and was found to be consistent with the available experimental data. In addition, the properties studied are the cohesive energy, molecular force constant, Restrahlen frequency and Gruneisen parameter. After characterizing thermal properties, a systematic investigation of elastic behavior has been undertaken and it has been found that the elastic moduli are decreasing continuously with increasing temperature.


2004 ◽  
Vol 261-263 ◽  
pp. 75-80
Author(s):  
G.H. Nie ◽  
H. Xu

In this paper elastic stress field in an elliptic inhomogeneity embedded in orthotropic media due to non-elastic deformation is determined by the complex function method and the principle of minimum strain energy. Two complex parameters are expressed in a general form, which covers all characterizations of the degree of anisotropy for any ideal orthotropic elastic body. The stress acting on the long side of ellipse can be considered as a crack driving force and applied in failure and fatigue analysis of composites. For some special cases, the resulting solutions will reduce to the known results.


Author(s):  
Yu Cheng Liu ◽  
Jin Huang Huang

This paper mainly analyzes the wave dispersion relations and associated modal pattens in the inclusion-reinforced composite plates including the effect of inclusion shapes, inclusion contents, inclusion elastic constants, and plate thickness. The shape of inclusion is modeled as spheroid that enables the composite reinforcement geometrical configurations ranging from sphere to short and continuous fiber. Using the Mori-Tanaka mean-field theory, the effective elastic moduli which are able to elucidate the effect of inclusion’s shape, stiffness, and volume fraction on the composite’s anisotropic elastic behavior can be predicted explicitly. Then, the dispersion relations and the modal patterns of Lamb waves determined from the effective elastic moduli can be obtained by using the dynamic stiffness matrix method. Numerical simulations have been given for the various inclusion types and the resulting dispersions in various wave types on the composite plate. The types (symmetric or antisymmetric) of Lamb waves in an isotropic plate can be classified according to the wave motions about the midplane of the plate. For an orthotropic composite plate, it can also be classified as either symmetric or antisymmetric waves by analyzing the dispersion curves and inspecting the calculated modal patterns. It is also found that the inclusion contents, aspect ratios and plate thickness affect propagation velocities, higher-order mode cutoff frequencies, and modal patterns.


1999 ◽  
Vol 14 (6) ◽  
pp. 2219-2227 ◽  
Author(s):  
J. D. Kiely ◽  
K. F. Jarausch ◽  
J. E. Houston ◽  
P. E. Russell

We have used the interfacial force microscope to perform nanoindentations on Au single-crystal surfaces. We have observed two distinct regimes of plastic deformation, which are distinguished by the magnitude of discontinuities in load relaxation. At lower stresses, relaxation occurs in small deviations from elastic behavior, while at the higher stresses they take the form of large load drops, often resulting in complete relaxation of the applied load. These major events create a relatively wide plastic zone that subsequently deepens more rapidly than it widens. We discuss these findings in terms of contrasting models of dislocation processes in the two regimes.


Author(s):  
Wolfgang Hürst

In this article, we discuss the concept of elastic interfaces, which was originally introduced by Masui, Kashiwagi, and Borden (1995) a decade ago for the manipulation of discrete, time-independent data. It gained recent attraction again by our own work in which we adapted and extended it in order to use it in a couple of other applications, most importantly in the context of continuous, time-dependent documents (Hürst & Götz, 2004; Hürst, Götz, & Lauer, 2004). The basic idea of an elastic interface is illustrated in Figure 1. Normally, objects are moved by dragging them directly to the target position (direct positioning). With elastic interfaces, the object follows the cursor or mouse pointer on its way to the target position with a speed s that is a function of the distance d between the cursor and the object. They are called elastic because the behavior can be explained by the rubber-band metaphor, in which the connection between the cursor and the object is seen as a rubber band: The more the band is stretched, the stronger the force between the object and the cursor gets, which makes the object move faster. Once the object and cursor come closer to each other, the pressure on the rubber band decreases, thus slowing down the object’s movement. In the next section we describe when and why elastic interfaces are commonly used and review related approaches. Afterward, we illustrate different scenarios and applications in which elastic interfaces have been used successfully for visual data browsing, that is, for skimming and navigating through visual data. First, we review the work done by Masui (1998) and Masui et al. (1995) in the context of discrete, time-independent data. Then we describe our own work, which applies the concept of elastic interfaces to continuous, time-dependent media streams. In addition, we discuss specific aspects considering the integration of such an elastic behavior into common GUIs (graphical user interfaces) and introduce a new interface design that is especially useful in context with multimedia-document skimming.


1974 ◽  
Vol 13 (69) ◽  
pp. 457-471 ◽  
Author(s):  
W. D. Hibler

A comparison of mesoscale strain measurements with the atmospheric pressure field and the wind velocity field indicate that the ice divergence rate and vorticity follow the local pressure and wind divergence with significant correlation. For low atmospheric pressures and converging winds the divergence rate was found to be negative with the vorticity being counter-clockwise. The inverse behavior was observed for high pressures and diverging winds. This behavior was shown to agree with predictions based upon the infinite boundary solution of a linearized drift theory in the absence of gradient current effects and using the constitutive law proposed by Glen (1970) for pack ice. The best least-squares values of the constitutive law parametersηandζwere found to be ≈ 1012kg/s. Using typical divergence rates these values yield compressive stresses of the magnitude of 105N/m which are similar to values suggested by the Parmerter and Coon (1972) ridge model. In general, the infinite boundary solution of the linear drift equation indicates that in a low-pressure region that is reasonably localized in space, the ice would be expected to converge for high compactness (winter) and diverge for low compactness (summer).Calculations were also carried out using a more general linear visco-elastic constitutive law that includes memory effects and which includes a generalized Hooke’s law as well as the Glen law as special cases. A best fit of this more general calculation with strain measurements indicates overall a better agreement with viscous behavior than with elastic behavior, with the frequency behavior of the estimated “viscosities” similar to the Glen law behavior at temporal frequencies less than ≈ 0.01 h−1.


Sign in / Sign up

Export Citation Format

Share Document