Observing Interfacial Sliding Processes in Solid–Solid Contacts

MRS Bulletin ◽  
2008 ◽  
Vol 33 (12) ◽  
pp. 1159-1167 ◽  
Author(s):  
Kathryn J. Wahl ◽  
W. Gregory Sawyer

AbstractDirectly seeing into a moving contact is a powerful approach to understanding how solid lubricants develop low-friction, long-lived interfaces. In this article, we present optical microscopy and spectroscopy approaches that can be integrated with friction monitoring instrumentation to provide real-time, in situ evaluation of solid lubrication phenomena. Importantly, these tools allow direct correlation of common tribological events (such as variations in friction and wear) with the responsible sliding-induced mechanical and chemical phenomena. We demonstrate the utility of in situ approaches with applications to a variety of thin-film solid lubricants.

2021 ◽  
Vol 11 (2) ◽  
pp. 595
Author(s):  
Tatsuhiko Aizawa ◽  
Tomoaki Yoshino ◽  
Yohei Suzuki ◽  
Tomomi Shiratori

A bare AISI420J2 punch often suffers from severe adhesion of metallic titanium as well as titanium oxide debris particles in dry, cold forging of biomedical titanium alloys. This punch was plasma-carburized at 673 K for 14.4 ks to harden it up to 1200 HV on average and to achieve carbon supersaturation in the carburized layer. This plasma-carburized punch was employed in the cold, dry forging of a pure titanium wire into a flat plate while reducing the thickness by 70%. The contact interface width approached the forged workpiece width with increasing the reduction ratio. This smaller bulging deformation reveals that the workpiece is upset by homogeneous plastic flow with a lower friction coefficient. This low-friction and anti-galling forging process was sustained by an in situ solid lubrication mechanism. Unbound free carbon was isolated from the carbon-supersaturated AISI420J2 matrix and deposited as a thin tribofilm to protect the contact interface from mass transfer of metallic titanium.


2013 ◽  
Vol 652-654 ◽  
pp. 1904-1907 ◽  
Author(s):  
Suo Xia Hou ◽  
Hui Gao ◽  
Xiao Ming Jia

WS2has excellent tribological properties; it is emerging of lubricating materials. MoS2is commonly used solid lubricants and wide range of applications, but its poor heat resistance. WS2can well make up for the inadequate performance of the MoS2, but uses it as a solid lubricant in performance research on metallic materials. By friction and wear testing, the paper gets feasibility analysis of the application that WS2instead of MoS2in the field of solid lubrication, while exploring the synergies between them, laying the foundations for the manufacture of new types of composite lubrication coatings.


2008 ◽  
Vol 368-372 ◽  
pp. 1088-1091 ◽  
Author(s):  
Jia Hu Ouyang ◽  
Takashi Murakami ◽  
Shinya Sasaki ◽  
Yu Feng Li ◽  
Ya Ming Wang ◽  
...  

The high-temperature friction and wear characteristics of different ceramics and ceramic matrix composites (CMCs) incorporated with various solid lubricants have been investigated from room temper- ature to 1000oC. The solid lubricants considered in this paper include representative precious metals, hexagonal boron nitride, graphite, fluorides, soft oxides, chromates, sulfates, and combinations of various solid lubricants. General design considerations relevant to solid lubrication were proposed on the basis of friction and wear data of self-lubricating CMCs. The self-lubricating composites incorporated with SrSO4 or/and CaSiO3 exhibits low and stable friction coefficients of 0.2 to 0.3 and small wear rates in the order of 10-6 mm3/Nm from room temperature to 800oC. The optimized composites appear to be promising can- didates for long-duration, extreme environment applications with low friction and small wear rate.


Author(s):  
Koshi Adachi ◽  
Hisakazu Sato ◽  
Koji Kato

Solid lubrication film formed by tribo-coating, which deposits a solid lubricant by evaporation to the contact interface during friction in vacuum, gives low friction coefficient below 0.03 that can not be observed by any other solid lubricants of soft metals. The tribo-coating film formed on the pin has nano-order composite structure which the crystalline indium of nano size are distributed in an amorphous matrix of silicon oxide and chromium oxide. Because of the nano composite structure, a very thin indium film is formed without break down like conventional pre-coated thin film. The thinner indium film can give smaller value of friction coefficient than that of conventional solid lubricant.


2010 ◽  
Vol 139-141 ◽  
pp. 274-279
Author(s):  
Yu Zhou Gao ◽  
Jiang Tao Wang ◽  
Shi Yong Liu ◽  
Hui Chen Zhang

Two kinds of ceramic additives have been developed that one is the serpentine particles and another is a blend of serpentine particles and catalyst. The tribological properties of the addition of different additives are investigated through a series of friction and wear experiments. Wear surface and the composition of the tribofilm were examined by SEM, EDS and XPS. In case of single serpentine additive, tribo-film can be formed gradually on the worn metal surface. The friction coefficient is about 0.11. The tribofilm mainly consists of Mg and Si elements transferred from the additive. This can compensates part of wear mass loss, avoids the direct contact of the two rubbing surfaces, and thus effectively improves the anti-wear characteristics. In case of the blend oil additive, the tribo-film formed obviously on the worn surface in the initial stage and no obvious film at end of the test. However, the friction coefficient can lower even to 0.007~0.008 compared with the above experiment. The worn surface becomes very smooth. Chemical analysis shows that there is a very thin film of carbon concentration with thickness of 30~50nm on the worn surface. Existence of the very thin carbon-concentrated film and mirror-like surface generates super low friction coefficient.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
M. Park ◽  
S.J. Krause ◽  
S.R. Wilson

Cu alloying in Al interconnection lines on semiconductor chips improves their resistance to electromigration and hillock growth. Excess Cu in Al can result in the formation of Cu-rich Al2Cu (θ) precipitates. These precipitates can significantly increase corrosion susceptibility due to the galvanic action between the θ-phase and the adjacent Cu-depleted matrix. The size and distribution of the θ-phase are also closely related to the film susceptibility to electromigration voiding. Thus, an important issue is the precipitation phenomena which occur during thermal device processing steps. In bulk alloys, it was found that the θ precipitates can grow via the grain boundary “collector plate mechanism” at rates far greater than allowed by volume diffusion. In a thin film, however, one might expect that the growth rate of a θ precipitate might be altered by interfacial diffusion. In this work, we report on the growth (lengthening) kinetics of the θ-phase in Al-Cu thin films as examined by in-situ isothermal aging in transmission electron microscopy (TEM).


Sign in / Sign up

Export Citation Format

Share Document