Synthesis of Graphene-CNT Hybrid Nanostructures

2011 ◽  
Vol 1344 ◽  
Author(s):  
Maziar Ghazinejad ◽  
Shirui Guo ◽  
Rajat K. Paul ◽  
Aaron S. George ◽  
Miroslav Penchev ◽  
...  

ABSTRACTUsing chemical vapor deposition technique, a novel 3D carbon nano-architecture called a pillared graphene nanostructure (PGN) is in situ synthesized. The fabricated novel carbon nanostructure consists of CNT pillars of variable length grown vertically from large-area graphene planes. The formation of CNTs and graphene occurs simultaneously in one CVD growth treatment. The detailed characterization of synthesized pillared graphene shows the cohesive structure and seamless contact between graphene and CNTs in the hybrid structure. The synthesized graphene-CNT hybrid has a tunable architecture and attractive material properties, as it is solely built from sp2 hybridized carbon atoms in form of graphene and CNT. Our methodology provides a pathway for fabricating novel 3D nanostructures which are envisioned for applications in hydrogen storage, nanoelectronics, and supercapacitors.

1989 ◽  
Vol 158 ◽  
Author(s):  
R. Scarmozzino ◽  
T. Cacouris ◽  
R.M. Osgood

ABSTRACTIn situ measurement of resistance has been used for the realtime monitoring of metallorganic chemical vapor deposition (CVD) growth characteristics. In particular, a novel technique for measuring metallorganic CVD activation energies is presented. The micron scale geometry of the experiment makes it relevant to work in localized laser CVD. The technique has been used to measure the CVD activation energy of dimethylaluminum hydride (DMAlH). In addition, a variant of the technique has been used to study the growth stage of a resistless two-step metallization process (nucleation / selective CVD) employing DMAIH as the source gas in both steps.


2019 ◽  
Vol 3 (2) ◽  
pp. 42
Author(s):  
Maria Giovanna Pastore Carbone ◽  
Georgia Tsoukleri ◽  
Anastasios C. Manikas ◽  
Eleni Makarona ◽  
Christos Tsamis ◽  
...  

Patterning of graphene into micro- and nano-ribbons allows for tunability in emerging fields such as flexible electronic and optoelectronic devices, and is gaining interest for the production of more efficient reinforcement for composite materials. In this work we fabricate micro-ribbons from graphene synthesized via chemical vapor deposition (CVD) by combining ultraviolet (UV) photolithography and dry etching oxygen plasma treatments. We used Raman spectral imaging to confirm the effectiveness of the patterning procedure, which is suitable for large-area patterning of graphene on wafer-scale, and confirms that the quality of graphene remains unaltered. The produced micro-ribbons were finally transferred and embedded into a polymeric matrix and the mechanical response was investigated by in-situ mechanical investigation combining Raman spectroscopy and tensile/compressive tests.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonathan Bradford ◽  
Mahnaz Shafiei ◽  
Jennifer MacLeod ◽  
Nunzio Motta

Abstract Van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs) and graphene have attracted keen scientific interest due to the complementary properties of the materials, which have wide reaching technological applications. Direct growth of uniform, large area TMDs on graphene substrates by chemical vapor deposition (CVD) is limited by slow lateral growth rates, which result in a tendency for non-uniform multilayer growth. In this work, monolayer and few-layer WS2 was grown on epitaxial graphene on SiC by sulfurization of WO3−x thin films deposited directly onto the substrate. Using this method, WS2 growth was achieved at temperatures as low as 700 °C – significantly less than the temperature required for conventional CVD. Achieving long-range uniformity remains a challenge, but this process could provide a route to synthesize a broad range of TMD/graphene van der Waals heterostructures with novel properties and functionality not accessible by conventional CVD growth.


2008 ◽  
Vol 1142 ◽  
Author(s):  
Hideto Yoshida ◽  
Seiji Takeda ◽  
Tetsuya Uchiyama ◽  
Hideo Kohno ◽  
Yoshikazu Homma

ABSTRACTNucleation and growth processes of carbon nanotubes (CNTs) in iron catalyzed chemical vapor deposition (CVD) have been observed by means of in-situ environmental transmission electron microscopy. Our atomic scale observations demonstrate that solid state iron carbide (Fe3C) nanoparticles act as catalyst for the CVD growth of CNTs. Iron carbide nanoparticles are structurally fluctuated in CVD condition. Growth of CNTs can be simply explained by bulk diffusion of carbon atoms since nanoparticles are carbide.


2005 ◽  
Vol 287 ◽  
pp. 200-205 ◽  
Author(s):  
Ji Yeon Park ◽  
S.M. Kang ◽  
Weon Ju Kim ◽  
Woo Seog Ryu

To obtain a dense SiCf/SiC composite by the chemical vapor infiltration (CVI) process, whisker growing before matrix filling was applied, which is called the whisker growing assisted CVI process. The whisker growing and matrix filling processes were carried out using MTS (CH3SiCl3) and H2 as source and diluent gases, respectively. Tyranno-SATM was used as a reinforced substrate. Characterizations of SiC whisker grown during the in situ whisker growing process have been investigated. The weight gain rates with the matrix filling time and the density of composites was measured. The flexural strength with the thickness of the pyrolytic carbon (PyC) interlayers has been evaluated. b-SiC whiskers with many stacking faults were grown well in the Tyranno SATM fabrics. Tyranno-SA/SiC composite with a PyC interlayer thickness of 150 nm had a flexural strength of 610 MPa and the density of 2.71 g/cm3.


2021 ◽  
Author(s):  
Somayeh Asgary ◽  
Amir Hoshang Ramezani ◽  
Zhaleh Ebrahimi Nejad

Abstract WS2 flakes have been grown successfully on SiO2 substrate via chemical vapor (CVD) deposition method by reduction and sulfurization of WO3 using Ar/ H2 gas and sulfur evaporated from solid sulfur powder. The prepared samples were characterized by optical microscopy (OM), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). Large domain WS2 monolayers are obtained by extending the growth time. The perfect triangular single-crystalline WS2 flakes with an average length of more than 35 µm were achieved. The sharp PL peak (∼1.98 eV) and two distinct Raman peaks (E2g and A1g) with a ∼ 71.5 cm-1 peak split indicating that relatively high quality WS2 crystals with a regular triangle shape can be synthesized. Higher growth time shows larger triangular-shaped of WS2.


1998 ◽  
Vol 52 (4) ◽  
pp. 477-487 ◽  
Author(s):  
Alian Wang ◽  
Larry A. Haskin ◽  
Enriqueta Cortez

Raman spectroscopy has the potential to provide definitive identification and detailed characterization of the minerals that comprise rocks and soils on planetary surfaces. We have designed a probe head for Raman spectroscopy that is suitable for use on a spectrometer deployed by a rover or a lander on the surface of a planet such as Mars, the Moon, or an asteroid. The probe head is lightweight, low power, rugged, and simple. It is based on a tiny distributed feedback diode laser and volume holographic components. A protective shell surrounds the probe head and serves as a mechanical stop for the mechanical arm of a planetary rover or lander during placement of the probe head onto the surface of a rock or soil. Pressing the shell against the rough surface of a target rock or soil also places the sampling objective of the probe head in rough focus, and the probe head is designed to be tolerant of focusing errors of ∼5 mm. A breadboard version of the probe head gave spectra of high quality on clean crystals of diamond, sulfur, calcite, quartz, and olivine. The results are qualitatively comparable to those obtained by using a conventional micro-Raman spectrometer on fine-grained travertine and on difficult specimens of basaltic lavas and impactites whose original mineralogy had been altered by reaction with water and air.


2011 ◽  
Vol 1348 ◽  
Author(s):  
Jian Lin ◽  
Miroslav Penchev ◽  
Guoping Wang ◽  
Rajat K Paul ◽  
Jiebin Zhong ◽  
...  

ABSTRACTIn this work, we report the synthesis and characterization of three dimensional heterostructures graphene nanostructures (HGN) comprising continuous large area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition. Characterization of large area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical transmittance and enhanced electrical conductivity. Electron microscopy investigation of the three dimensional heterostructures shows that the morphology of ZnO nanostructures is highly dependent on the growth temperature. It is observed that ordered crystalline ZnO nanostructures are preferably grown along the <0001> direction. Ultraviolet spectroscopy indicates that the CVD grown HGN layers has excellent optical properties. A combination of electrical and optical properties of graphene and ZnO building blocks in ZnO based HGN provides unique characteristics for opportunities in future optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document