scholarly journals Production and Mechanical Characterization of Graphene Micro-Ribbons

2019 ◽  
Vol 3 (2) ◽  
pp. 42
Author(s):  
Maria Giovanna Pastore Carbone ◽  
Georgia Tsoukleri ◽  
Anastasios C. Manikas ◽  
Eleni Makarona ◽  
Christos Tsamis ◽  
...  

Patterning of graphene into micro- and nano-ribbons allows for tunability in emerging fields such as flexible electronic and optoelectronic devices, and is gaining interest for the production of more efficient reinforcement for composite materials. In this work we fabricate micro-ribbons from graphene synthesized via chemical vapor deposition (CVD) by combining ultraviolet (UV) photolithography and dry etching oxygen plasma treatments. We used Raman spectral imaging to confirm the effectiveness of the patterning procedure, which is suitable for large-area patterning of graphene on wafer-scale, and confirms that the quality of graphene remains unaltered. The produced micro-ribbons were finally transferred and embedded into a polymeric matrix and the mechanical response was investigated by in-situ mechanical investigation combining Raman spectroscopy and tensile/compressive tests.

2011 ◽  
Vol 1344 ◽  
Author(s):  
Maziar Ghazinejad ◽  
Shirui Guo ◽  
Rajat K. Paul ◽  
Aaron S. George ◽  
Miroslav Penchev ◽  
...  

ABSTRACTUsing chemical vapor deposition technique, a novel 3D carbon nano-architecture called a pillared graphene nanostructure (PGN) is in situ synthesized. The fabricated novel carbon nanostructure consists of CNT pillars of variable length grown vertically from large-area graphene planes. The formation of CNTs and graphene occurs simultaneously in one CVD growth treatment. The detailed characterization of synthesized pillared graphene shows the cohesive structure and seamless contact between graphene and CNTs in the hybrid structure. The synthesized graphene-CNT hybrid has a tunable architecture and attractive material properties, as it is solely built from sp2 hybridized carbon atoms in form of graphene and CNT. Our methodology provides a pathway for fabricating novel 3D nanostructures which are envisioned for applications in hydrogen storage, nanoelectronics, and supercapacitors.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohsen Moazzami Gudarzi ◽  
Maryana Asaad ◽  
Boyang Mao ◽  
Gergo Pinter ◽  
Jianqiang Guo ◽  
...  

AbstractThe use of two-dimensional materials in bulk functional applications requires the ability to fabricate defect-free 2D sheets with large aspect ratios. Despite huge research efforts, current bulk exfoliation methods require a compromise between the quality of the final flakes and their lateral size, restricting the effectiveness of the product. In this work, we describe an intercalation-assisted exfoliation route, which allows the production of high-quality graphene, hexagonal boron nitride, and molybdenum disulfide 2D sheets with average aspect ratios 30 times larger than that obtained via conventional liquid-phase exfoliation. The combination of chlorosulfuric acid intercalation with in situ pyrene sulfonate functionalisation produces a suspension of thin large-area flakes, which are stable in various polar solvents. The described method is simple and requires no special laboratory conditions. We demonstrate that these suspensions can be used for fabrication of laminates and coatings with electrical properties suitable for a number of real-life applications.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2022 ◽  
Vol 119 (3) ◽  
pp. e2117232119
Author(s):  
Giulio Franchini ◽  
Ivan D. Breslavsky ◽  
Francesco Giovanniello ◽  
Ali Kassab ◽  
Gerhard A. Holzapfel ◽  
...  

Experimental data and a suitable material model for human aortas with smooth muscle activation are not available in the literature despite the need for developing advanced grafts; the present study closes this gap. Mechanical characterization of human descending thoracic aortas was performed with and without vascular smooth muscle (VSM) activation. Specimens were taken from 13 heart-beating donors. The aortic segments were cooled in Belzer UW solution during transport and tested within a few hours after explantation. VSM activation was achieved through the use of potassium depolarization and noradrenaline as vasoactive agents. In addition to isometric activation experiments, the quasistatic passive and active stress–strain curves were obtained for circumferential and longitudinal strips of the aortic material. This characterization made it possible to create an original mechanical model of the active aortic material that accurately fits the experimental data. The dynamic mechanical characterization was executed using cyclic strain at different frequencies of physiological interest. An initial prestretch, which corresponded to the physiological conditions, was applied before cyclic loading. Dynamic tests made it possible to identify the differences in the viscoelastic behavior of the passive and active tissue. This work illustrates the importance of VSM activation for the static and dynamic mechanical response of human aortas. Most importantly, this study provides material data and a material model for the development of a future generation of active aortic grafts that mimic natural behavior and help regulate blood pressure.


Sign in / Sign up

Export Citation Format

Share Document