Utilization of Industrial Inkjet Technologies for the Deposition of Conductive Polymers, Functional Oxides and CNTs

2011 ◽  
Vol 1340 ◽  
Author(s):  
Wolfgang Voit ◽  
Ingo Reinhold ◽  
Werner Zapka ◽  
Lyubov Belova ◽  
K.V. Rao

ABSTRACTPrinting of functional materials requires reliable deposition processes. This work describes the development of printing processes for selected functional materials utilizing industrial-type inkjet printheads. A well-controlled printing process with fluids containing the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is presented, allowing linear printing speeds of up to 0.35 m/s in single-pass, and smallest line width of approximately 40 μm when printing 7 pL drop volumes. In addition reliable processes for producing ZnO-based films, which enable novel applications for electronic and UV-sensitive devices, and for printing of conductive carbon nanotube layers are shown.

ACS Nano ◽  
2021 ◽  
Author(s):  
Yizeng Wu ◽  
Xuewei Zhao ◽  
Yuanyuan Shang ◽  
Shulong Chang ◽  
Linxiu Dai ◽  
...  

2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2016 ◽  
Vol 4 (22) ◽  
pp. 4912-4919 ◽  
Author(s):  
Yong Jin Jeong ◽  
Xinlin Lee ◽  
Jaehyun Bae ◽  
Jaeyoung Jang ◽  
Sang Woo Joo ◽  
...  

Conductive MWCNT/PSS composites have been directly patterned via electrohydrodynamic printing for application as source/drain electrodes in organic field-effect transistors.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1132
Author(s):  
Xiaoqiang Li ◽  
Guangming Zhang ◽  
Wenhai Li ◽  
Zun Yu ◽  
Kun Yang ◽  
...  

Existing 3D printing techniques are still facing the challenge of low resolution for fabricating polymer matrix composites, inhibiting the wide engineering applications for the biomedical engineering (biomimetic scaffolds), micro fuel cells, and micro-electronics. In order to achieve high resolution fabrication of polylactic acid (PLA)/multi-walled carbon nanotube (MWCNT) composites, this paper presents an electric-field-driven (EFD) fusion jetting 3D printing method by combining the mixing effect and material feeding of the micro-screw and the necking effect of Taylor cone by the EFD. The effects of main process parameters (the carbon loading, the voltage, the screw speed, and the printing speed) on the line width and the printing quality were studied and optimized. To demonstrate the printing capability of this proposed method, meshes with line width of 30 µm to 100 μm and 1 wt.% to 5 wt.% MWCNT for the application of conductive biomimetic scaffold and the anisotropic flexible meshes were prepared. The electrical properties were investigated to present the frequency dependence of the alternating current conductivity and the dielectric loss (tanδ), and the microstructures of printed structures demonstrated the uniformly dispersed MWCNT in PLA matrix. Therefore, it provides a new solution to fabricate micro-scale structures of composite materials, especially the 3D conductive biomimetic scaffolds.


Author(s):  
Shrishti Pramod Pandey ◽  
Ankur A. Awasthi ◽  
Prabhat K Singh

A tunable and controllable emission is an extremely desirable feature for advanced functional materials that finds usage in optoelectronic utilization, fluorescence probing/ sensing, drug-delivery monitoring, etc. In the present contribution,...


2010 ◽  
Vol 159 ◽  
pp. 650-655 ◽  
Author(s):  
Md. Saiful Islam ◽  
Abbas Kouzani ◽  
Xiu Juan Dai ◽  
Wojtek P. Michalski

This paper investigates the bending deformation of a cantilever biosensor based on a single-walled carbon nanotube (CNT) and single-walled boron nitride nanotube (BNNT) due to bioparticle detection. Through 3-D modeling and simulations, the performance of the CNT and BNNT cantilever biosensors is analyzed. It is found that the BNNT cantilever has better response and sensitivity compared to the CNT counterpart. Additionally, an algorithm for an electrostatic-mechanical coupled system is developed. The cantilever (both BNNT and CNT) is modelled by accounting that a conductive polymer is deposited onto the nanotube surfaces. Two main approaches are considered for the mechanical deformation of the nanotube beam. The first one is differential surface stress produced by the binding of biomolecules onto the surface. The second one is the charge released from the biomolecular interaction. Also, different ambient conditions are considered in the study of sensitivity. Sodium Dodisyl Sulphate (SDS) provides better bending deformation than the air medium. Other parameters including length of beam, variation of beam’s location, and chiralities are considered in the design. The results are in excellent agreement with the electrostatic equations that govern the deformation of cantilever.


2016 ◽  
Vol 848 ◽  
pp. 13-17
Author(s):  
Run Run Xu ◽  
Xiang Hong Wu ◽  
Yun Long Han

Carbon nanotube (CNT) has been widely used as a kind of conductive inorganic filler in composites due to its excellent mechanical properties, thermal properties and electrical properties. Unfortunately, a deal of CNT is needed because it tends to agglomerate in matrix polymers. And therefore the researchers need to explore appropriate methods to decrease the usage of CNT for its high price. This paper summaries the recent development progress in carbon nanotube filled conductive polymer composites, in aspects of the approaches how to reduce the usage of CNT and application of biodegradable CNT-polymer composites. In addition, the future developing research direction in conductive polymer composites filled with carbon nanotube was indicated.


Sign in / Sign up

Export Citation Format

Share Document