Supramolecular tuning of Thioflavin-T aggregation hosted by polystyrene sulfonate

Author(s):  
Shrishti Pramod Pandey ◽  
Ankur A. Awasthi ◽  
Prabhat K Singh

A tunable and controllable emission is an extremely desirable feature for advanced functional materials that finds usage in optoelectronic utilization, fluorescence probing/ sensing, drug-delivery monitoring, etc. In the present contribution,...

2021 ◽  
Vol 2086 (1) ◽  
pp. 012123
Author(s):  
A A Vronskaia ◽  
A D Mikushina ◽  
I E Eliseev

Abstract Tandem repeat proteins have composite structure and unique properties, which allow them to be used in multiple fields, such as soft photonics, drug delivery and textile industry. The recent discovery of squid ring teeth (SRT) proteins have expanded the existing repertoire of repetitive polypeptides. We chose previously unexplored squid B. magister for our research, isolated and analyzed a new protein forming its ring teeth and hooks, and amplified the corresponding gene. Finally, we used this new isolated SRT protein to fabricate transparent thin films and microspheres.


2020 ◽  
Vol 11 (4) ◽  
pp. 71 ◽  
Author(s):  
John H. T. Luong ◽  
Tarun Narayan ◽  
Shipra Solanki ◽  
Bansi D. Malhotra

Conducting polymers (CPs) have been at the center of research owing to their metal-like electrochemical properties and polymer-like dispersion nature. CPs and their composites serve as ideal functional materials for diversified biomedical applications like drug delivery, tissue engineering, and diagnostics. There have also been numerous biosensing platforms based on polyaniline (PANI), polypyrrole (PPY), polythiophene (PTP), and their composites. Based on their unique properties and extensive use in biosensing matrices, updated information on novel CPs and their role is appealing. This review focuses on the properties and performance of biosensing matrices based on CPs reported in the last three years. The salient features of CPs like PANI, PPY, PTP, and their composites with nanoparticles, carbon materials, etc. are outlined along with respective examples. A description of mediator conjugated biosensor designs and enzymeless CPs based glucose sensing has also been included. The future research trends with required improvements to improve the analytical performance of CP-biosensing devices have also been addressed.


2005 ◽  
Vol 896 ◽  
Author(s):  
Reed Ayers ◽  
Doug Burkes ◽  
Guglielmo Gottoli ◽  
H.C. Yi ◽  
Jaque Guigné ◽  
...  

AbstractThe term combustion synthesis, or self-propagating high temperature synthesis (SHS), refers to an exothermic chemical reaction process that utilizes the heat generated by the exothermic reaction to ignite and sustain a propagating combustion wave through the reactants to produce the desired product(s). The products of combustion synthesis normally are extremely porous: typically 50 percent of theoretical densityAdvantages of combustion synthesis over traditional processing routes, e.g., sintering, in the production of advanced materials such as ceramics, intermetallic compounds and composites include process economics, simplicity of operation, and low energy requirements. However, the high exothermicity and rapid combustion propagation rates necessitate a high degree of control of these reactions.One research area being conducted in the Institute for Space Resources (ISR) at the Colorado School of Mines (CSM) is the application of combustion synthesis (SHS) to synthesize advanced, engineered porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems. Such material systems require a complex combination of properties that can be truly classified as multi-functional materials. The range of properties includes: an overall porosity of 40-60% with a pore size of 200-500 μm; mechanical properties (compression strength and Young’s modulus) that match those of natural bone to avoid ‘stress shielding’; and a surface chemistry that is capable of facilitating bone growth and mineralization.The paper will discuss the synthesis of porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems.


2011 ◽  
Vol 1340 ◽  
Author(s):  
Wolfgang Voit ◽  
Ingo Reinhold ◽  
Werner Zapka ◽  
Lyubov Belova ◽  
K.V. Rao

ABSTRACTPrinting of functional materials requires reliable deposition processes. This work describes the development of printing processes for selected functional materials utilizing industrial-type inkjet printheads. A well-controlled printing process with fluids containing the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is presented, allowing linear printing speeds of up to 0.35 m/s in single-pass, and smallest line width of approximately 40 μm when printing 7 pL drop volumes. In addition reliable processes for producing ZnO-based films, which enable novel applications for electronic and UV-sensitive devices, and for printing of conductive carbon nanotube layers are shown.


Photochem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 32-57
Author(s):  
Shashikana Paria ◽  
Prasenjit Maity ◽  
Rafia Siddiqui ◽  
Ranjan Patra ◽  
Shubhra Bikash Maity ◽  
...  

Luminescent micelles are extensively studied molecular scaffolds used in applied supramolecular chemistry. These are particularly important due to their uniquely organized supramolecular structure and chemically responsive physical and optical features. Various luminescent tags can be incorporated with these amphiphilic micelles to create efficient luminescent probes that can be utilized as “chemical noses” (sensors) for toxic and hazardous materials, bioimaging, drug delivery and transport, etc. Due to their amphiphilic nature and well-defined reorganized self-assembled geometry, these nano-constructs are desirable candidates for size and shape complementary guest binding or sensing a specific analyte. A large number of articles describing micellar fluorogenic probes are reported, which are used for cation/anion sensing, amino acid and protein sensing, drug delivery, and chemo-sensing. However, this particular review article critically summarizes the sensing application of nitroaromatic (e.g., trinitrotoluene (TNT), trinitrobenzene (TNB), trinitrophenol (TNP), dinitrobenzene (DNB), etc.) and nitramine explosives (e.g., 1,3,5-trinitro-1,3,5-triazinane, trivially named as “research department explosive” (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, commonly known as “high melting explosive” (HMX) etc.). A deeper understanding on these self-assembled luminescent “functional materials” and the physicochemical behavior in the presence of explosive analytes might be helpful to design the next generation of smart nanomaterials for forensic applications. This review article will also provide a “state-of-the-art” coverage of research involving micellar–explosive adducts demonstrating the intermolecular charge/electron transfer (CT/ET) process operating within the host–guest systems.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ahmed Abu-Dief ◽  
Mosa Alsehli ◽  
Abdullah Al-Enizi ◽  
Ayman Nafady

: Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, mesoporous silica nanoparticles (MSNPs) have sparked interest in the nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein, and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs and the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination, and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for the potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with the main focus on particle size, morphology, porosity, surface functionality, and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Zhao Qin ◽  
Markus J. Buehler

Low-dimensional nanomaterials are attractive for various applications, including damage repair, drug delivery, and bioimaging. The ability to control the morphology of nanomaterials is critical for manufacturing as well as for utilizing them as functional materials or devices. However, the manipulation of such materials remains challenging, and effective methods to control their morphology remain limited. Here, we propose to mimic a macroscopic biological system—the gut—as a means to control the nanoscale morphology by exploiting the concept of mismatch strain. We show that, by mimicking the development of the gut, one can obtain a controlled wavy shape of a combined carbon nanotube and graphene system. We show that the scaling laws that control the formation of the gut at the macroscale are suitable for ultrasmall-diameter carbon nanotubes with a diameter smaller than 7 Å but do not account for the morphology of systems with larger diameter nanotubes. We find that the deviation is caused by cross-sectional buckling of carbon nanotube, where this behavior relates to the different constitutive laws for carbon nanotube and graphene in contrast to the macroscale biological system. Our study illustrates the possibility of downscaling macroscale phenomena to the nanoscale using continuum mechanics theory, with wide-ranging applications in nanotechnology.


Sign in / Sign up

Export Citation Format

Share Document