Nano-scale Creep Compliance of Hybrid Aerogels

2011 ◽  
Vol 1306 ◽  
Author(s):  
N. de la Rosa-Fox ◽  
V. Morales-Flórez ◽  
M. Piñero ◽  
L. Esquivias

ABSTRACTThe copolymerization between TEOS (tetraethoxysilane) and silane derivatives was promoted by the application of high power ultrasound to the precursor liquid mixtures in the same way as in the classical sol-gel method. The specific organic precursor was selected from the silanol-terminated polymer family with different molecular functionality and the inorganic precursor was from the silicon alkoxide family. Ultrasound, through the acoustic cavitation process, influences the formation of a very fine distribution of silica particles and avoids cyclidation of the polymer, thus favoring copolymerization with the inorganic particles and leading to the formation of a highly porous and rubber-like solid aerogel. Creep compliance curves, corresponding to the time-dependent depth response to a step load, are imprint site dependent, with pore, soft and stiff sites discerned. In all cases, an instantaneous elastic deformation is apparent. For longer test times, depending on the imprint sites, elastic deformation and newtonian flow produce the rise and fall of the creep curve. Linear parts of the curve on a log-log scale indicate potential growth with small exponents for the creep compliance level. Isochrones stress-strain diagrams show a superlinear trend and an increase with time, which reveals the nonlinear viscoelasticity of these hybrid aerogels. The elasto-plastic response to creep can be tuned by the molecular functionality of the different silane derivatives studied.

2004 ◽  
Vol 847 ◽  
Author(s):  
Luis Esquivias ◽  
Víctor Morales-Flórez ◽  
Manuel Piñero ◽  
Nicolás de la Rosa-Fox ◽  
Julio Ramírez ◽  
...  

ABSTRACTWe have prepared organic-inorganic hybrid materials (OIHM), incorporating an organic phase in the inorganic precursor sol, using high power ultrasound for assistance with agitation. A sono-ormosil results after gelation. Colloidal silica particles have been added to these hybrids to enable network porous volume and pore radius to be tailored to specific requirements. Finally, in vitro bioactivity of this material has been promoted by adding calcium to the initial sol. The structure and bioactivity of these materials have been subjected to preliminary study, including their mechanical behaviour. These materials have a very fine structure especially after colloidal silica particles have been included. When immersed in a solution simulating blood plasma, they are bioactive, and the sample with colloid particles presents a better behaviour in vitro


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 277 ◽  
Author(s):  
Ala’ Salem ◽  
Anna Takácsi-Nagy ◽  
Sándor Nagy ◽  
Alexandra Hagymási ◽  
Fruzsina Gősi ◽  
...  

Drug–drug cocrystals are formulated to produce combined medication, not just to modulate active pharmaceutical ingredient (API) properties. Nano-crystals adjust the pharmacokinetic properties and enhance the dissolution of APIs. Nano-cocrystals seem to enhance API properties by combining the benefits of both technologies. Despite the promising opportunities of nano-sized cocrystals, the research at the interface of nano-technology and cocrystals has, however, been described to be in its infancy. In this study, high-pressure homogenization (HPH) and high-power ultrasound were used to prepare nano-sized cocrystals of 4-aminosalysilic acid and sulfamethazine in order to establish differences between the two methods in terms of cocrystal size, morphology, polymorphic form, and dissolution rate enhancement. It was found that both methods resulted in the formation of form I cocrystals with a high degree of crystallinity. HPH yielded nano-sized cocrystals, while those prepared by high-power ultrasound were in the micro-size range. Furthermore, HPH produced smaller-size cocrystals with a narrow size distribution when a higher pressure was used. Cocrystals appeared to be needle-like when prepared by HPH compared to those prepared by high-power ultrasound, which had a different morphology. The highest dissolution enhancement was observed in cocrystals prepared by HPH; however, both micro- and nano-sized cocrystals enhanced the dissolution of sulfamethazine.


2017 ◽  
Vol 36 (8) ◽  
pp. 789-793 ◽  
Author(s):  
Morteza Enhessari

AbstractNanoscale FeAl2O4 was successfully synthesized via sol–gel method. The sol constituents containing iron and aluminum cations were formed homogenously in stearic acid gel (formation of organic precursor). The pure structural analysis and the size of the spinels were confirmed by X-ray diffraction (XRD). It was observed that the size of the nanoscale materials obtained at around 30–40nm. The micrographs of FeAl2O4 evidenced the homogenous and nanosize formation of spinel. The semiconducting behavior of this mixed metal oxide was observed at 3.14eV based on the band gap energy (Eg). The final nanoscale materials exhibited a superparamagnetic behavior with a saturation magnetization of 9.8 emu/g at applied field of 10 kOe.


2014 ◽  
Vol 12 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Łukasz Klapiszewski ◽  
Michał Królak ◽  
Teofil Jesionowski

AbstractThis study focuses on the optimization process of silica synthesis using the sol-gel method while applying a statistical design of experiments which was based on a multilevel mathematical model. The product obtained in the process of optimized synthesis, characterized by the best dispersive and morphological parameters, was used for the preparation of organic/inorganic composites. The organic precursor was Kraft lignin, a high-molecular natural polymer. Synthesis of silica/lignin biocomposites was carried out by three proposed methods. The physicochemical properties and dispersive-morphological properties of each product were determined using the following available methods: Scanning Electron Microscopy — SEM, Non-Invasive Back-Scattering — NIBS, Fourier Transform Infrared Spectroscopy — FT-IR, Thermogravimetric analysis — TG and others. The electrokinetic and thermal properties of the biocomposites sufficed to be applied for example, as a cheap and biodegradable polymer filler. Further areas of application of these composites were sought, especially in electrochemistry as the advanced electrode materials.


2019 ◽  
Author(s):  
Benxue Liu ◽  
Min Gao

In compared with single component aerogel, hybrid aerogel with multi-components possessing enhanced properties, especially high thermal stabilities which are our concerns in this paper, are the promised materials in various applications. However, how the mixing between variable components within hybrid aerogel affects their properties still not very clear and needs more research efforts. In the present research, we chose a ZrO<sub>2</sub>/SiO<sub>2</sub> hybrid aerogel as represent to study their mixing and the resulted thermal stabilities. We designed a series of ZrO<sub>2</sub>/SiO<sub>2</sub> hybrid aerogels with variable ZrO<sub>2</sub>/SiO<sub>2</sub> ratio deriving from tailored sol-gel parameters, and then studied their shrinkages, nanopore collapses and crystallization behaviors upon heat-treatment.


Sign in / Sign up

Export Citation Format

Share Document