Recording IR spectra for individual electrospun fibers using an in situ AFM-synchrotron technique

2012 ◽  
Vol 1424 ◽  
Author(s):  
Urszula Stachewicz ◽  
Fei Hang ◽  
Russell J. Bailey ◽  
Himadri S. Gupta ◽  
Mark D. Frogley ◽  
...  

AbstractA setup is described where an individual electrospun polyamide fiber is attached to an atomic force microscope (AFM) tip and structural information collected with synchrotron micro Fourier transform infrared spectroscopy (μFT-IR). The combination of AFM and synchrotron μFT-IR therefore highlights the potential for recording structure-mechanical property relationships simultaneously in materials with sub-micron dimensions.

2000 ◽  
Vol 54 (3) ◽  
pp. 349-352 ◽  
Author(s):  
Mark S. Anderson

An atomic force microscope (AFM) has been used to measure the modulated photothermal displacement of a surface, thus acting as a local detector. This was demonstrated with Fourier transform infrared (FT-IR) and filter spectrometers focused on various samples. Similarly, surface layers were removed by an AFM and analyzed by the photothermal deformation of the coated cantilever. This work shows that the AFM can function as both an infrared detector and a precise surface separation device for spectroscopic analysis. The AFM combined with an FT-IR has the potential to enhance the sensitivity, selectivity, and spatial resolution of infrared spectroscopy.


2021 ◽  
Vol 11 (6) ◽  
pp. 2021-2025
Author(s):  
Liujin Wei ◽  
Guan Huang ◽  
Yajun Zhang

The combination of time-resolved transient photoluminescence with in-situ Fourier transform infrared spectroscopy has been conducted to investigate the intrinsic phase structure-dependent activity of Bi2O3 catalyst for CO2 reduction.


2008 ◽  
Vol 45 (9) ◽  
pp. 1061-1082 ◽  
Author(s):  
Ryan C. McKellar ◽  
Alexander P. Wolfe ◽  
Ralf Tappert ◽  
Karlis Muehlenbachs

The Late Cretaceous Grassy Lake and Cedar Lake amber deposits of western Canada are among North America’s most famous amber-producing localities. Although it has been suggested for over a century that Cedar Lake amber from western Manitoba may be a secondary deposit having originated from strata in Alberta, this hypothesis has not been tested explicitly using geochemical fingerprinting coupled to comparative analyses of arthropod faunal content. Although there are many amber-containing horizons associated with Cretaceous coals throughout Alberta, most are thermally mature and brittle, thus lacking the resilience to survive long distance transport while preserving intact biotic inclusions. One of the few exceptions is the amber found in situ at Grassy Lake. We present a suite of new analyses from these and other Late Cretaceous ambers from western Canada, including stable isotopes (H and C), Fourier transform infrared (FTIR) spectra, and an updated faunal compendium for the Grassy and Cedar lakes arthropod assemblages. When combined with amber’s physical properties and stratigraphic constraints, the results of these analyses confirm that Cedar Lake amber is derived directly from the Grassy Lake amber deposit or an immediate correlative equivalent. This enables the palaeoenvironmental context of Grassy Lake amber to be extended to the Cedar Lake deposit, making possible a more inclusive survey of Cretaceous arthropod faunas.


2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


Sign in / Sign up

Export Citation Format

Share Document