A New Smart Additive of Reinforced Concrete Based on Modified Hydrotalcites: Preparation, Characterization and Anticorrosion Applications

2012 ◽  
Vol 1488 ◽  
Author(s):  
Zhengxian Yang ◽  
Hartmut Fischer ◽  
Rob Polder

ABSTRACTA carbonate form of Mg-Al-hydrotalcite and its p-aminobenzoate (pAB) modified derivative (i.e.,Mg(2)Al-pAB) were synthesized and characterized by means of XRD and FT-IR. The anticorrosion behavior was evaluated based on open circuit potential (OCP) of carbon steel in simulated concrete pore solution and chloride-exchange experiments. The preliminary results shown in this study demonstrated that ion-exchange indeed occurred between chlorides and the intercalated pAB anions in Mg(2)Al-pAB structure, thereby reducing the free chloride concentration in simulated concrete pore solution. The simultaneously released inhibitive pAB anions were found to exhibit the envisaged inhibiting effect and caused corrosion initiation of the steel shifting to a higher chloride concentration than without the modified hydrotalcites.

2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.


2012 ◽  
Author(s):  
Ανδρόνικος Μπαλάσκας

Υβριδικές επιστρώσεις οργανικά τροποποιημένων πυριτικών ενώσεων και εποξειδικώνρητινών (Organically Modified Silicates, ORMOSILs – epoxy) εφαρμόστηκαν στο κράμααργιλίου 2024-Τ3 και σε γαλβανισμένο χάλυβα σε υψηλές θερμοκρασίες (Hot Dip GalvanizedSteel, HDGS) προκειμένου αυτές να προστατεύσουν τα υποστρώματα από τη διάβρωση. Για τηνβελτίωση της αντοχής των επιστρώσεων στην διάβρωση ενσωματώθηκαν στην πολυμερικήμήτρα νανοπεριέκτες από μολυβδαινικό δημήτριο (CeMo) και οξείδιο του τιτανίου (TiO2),καθώς και pH-ευαίσθητα οργανικά νανοδοχεία πληρωμένα με τους αναστολείς διάβρωσης 2-μερκαπτοβενζοθειαζόλιο, 8-υδροξυκινολίνη, 1H-βενζοτριαζολο-4-σουλφονικό οξύ καιεξαφλουοροτιτανικό οξύ.Οι υβριδικές επιστρώσεις εφαρμόστηκαν στο υπόστρωμα με τη διαδικασία εμβάπτισης.Η μορφολογία των επιστρώσεων εξετάστηκε με ηλεκτρονική μικροσκοπία σάρωσης (ScanningElectron Microscopy (SEM)). Η σύνθεση και η δομή τους μελετήθηκε με υπέρυθρηΦασματοσκοπία μετασχηματισμού Fourier (FT-IR) και με μικροανάλυση με φθορισμομετρίαακτίνων Χ (Energy Dispersive X-Ray Analysis (EDX)). H ηλεκτροχημική φασματοσκοπίασύνθετης αντίστασης (Electrochemical Impedance Spectroscopy, EIS), η dc-πόλωση (dcpolarization)και η μέτριση ανοικτού δυναμικού (open circuit potential, OCP) χρησιμοποιήθηκανγια την αξιολόγηση των αντι-διαβρωτικών ιδιοτήτων των επιστρώσεων. Τα αποτελέσματαέδειξαν ότι οι επιστρώσεις με πληρωμένα νανοδοχεία έχουν αυξημένες αντιδιαβρωτικέςιδιότητες συγκριτικά με τις υπόλοιπες επιστρώσεις εμφανίζοντας και ιδιότητες αυτο-θεραπείας.Τέλος, συντέθηκαν νανόσφαιρες οξειδίου του χαλκού (Cu2O), οι οποίεςχαρακτηρίστηκαν με SEM, ηλεκτρονική μικροσκοπία διερχόμενης δέσμης (ΤransmissionΕlectron Μicroscopy (TEM)) και περίθλαση ακτίνων Χ (X ray Diffraction (XRD)). Οινανόσφαιρες στη συνέχεια πληρώθηκαν με ουσίες που δρουν ως βιοκτόνα και ενσωματώθηκανσε βαφές εμπορίου και σε επιστρώσεις βασισμένες σε εποξειδικές ενώσεις και μελετήθηκε ηδράση τους ως αντιαποθετικά αντιδραστήρια. Τα αποτελέσματα έδειξαν ότι οι επιστρώσεις μεπληρωμένες νανόσφαιρες Cu2O είχαν μεγαλύτερη αποτελεσματικότητα σε σύγκριση με τιςβαφές εμπορίου με βιοκτόνα μετά από έκθεση σε θαλάσσιο περιβάλλον.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Farhad Pargar ◽  
Hristo Kolev ◽  
Dessi A. Koleva ◽  
Klaas van Breugel

The stability and reproducibility of an Ag/AgCl sensors’ response in an alkaline medium are important for the application of these sensors in cementitious materials. The sensors’ response, or their open circuit potential (OCP), reflects a dynamic equilibrium at the sensor/environment interface. The OCP response in an alkaline medium is affected by the presence of hydroxide ions. The interference of hydroxide ions leads to inaccuracies or a delay in the sensors’ response to a certain chloride content. In this article, the potentiometric response (or OCP evolution) of the chloride sensors is measured in model solutions, resembling the concrete pore water. The scatter of the sensors’ OCP is discussed with respect to the interference of hydroxide ions at varying chloride concentration in the medium. The deviation of the sensor’s response from its ideal performance (determined by the Nernst law) is attributed to dechlorination of the AgCl layer and the formation of Ag2O on the sensor’s surface. Results from the surface XPS analysis of the AgCl layer before and after treatment in alkaline medium confirm these observations in view of chemical transformation of AgCl to Ag2O.


1978 ◽  
Vol 31 (5) ◽  
pp. 943 ◽  
Author(s):  
RT Lowson

Measurements are reported for the variation of the open-circuit potential, Er, of aluminium in oxygen-saturated sodium salt solutions. The value of Er was independent of SO42- and NO3- concentrations and similar to the value obtained for water (0.04 (s.h.e.)). Er was a function of chloride concentration given by ������������������� Er = -0.475-0.060log[Cl-] V (s.h.e.) at 25�C. There was a less well defined relationship between Er and NO2-, I- and Br-, and a complex relationship with F-. ��� The potentiodynamic characteristics are reported for aluminium in 1-0.01 mol l-1 Cl- oxygen-saturated solutions. Functional relationships were found for E0, Ep, Es and E0' with chloride activity at 5, 25, 50 and 75°C. Hysteresis effects are reported. ��� The experimental results are interpreted in terms of a thermodynamic equilibrium condition between the surface oxide and soluble aluminium chloride. As the system oscillates across the equilibrium conditions the surface will passivate or pit. A critical bulk solution chloride concentration is necessary to maintain the growth of the pit; the experimental value was 1.6 mol l-1 Cl- and the corresponding open-circuit potential was Ecrit = -0.48 V (s.h.e.). The pitting potential, Ev, was interpreted as an overpotential, ηp, given by η = Ep,- Ep-Ecrit.


2015 ◽  
Vol 1768 ◽  
Author(s):  
F. Pargar ◽  
D.A. Koleva ◽  
E.A.B. Koenders ◽  
K. van Breugel

ABSTRACTThis work presents the electrochemical behavior of Ag/AgCl electrodes (chloride sensors) in cement paste environment, monitored over a period of 180 days via open circuit potential (OCP) readings and electrochemical impedance spectroscopy (EIS). The EIS response indicates modification of the sensors’ morphology, in particular alteration of the AgCl layers, as a result of continuous chloride penetration into the bulk matrix towards the vicinity of the sensor/cement paste interface. A gradual shift to more cathodic OCP values and stabilization at approximately -1mVSCE to 2mVSCE was observed at the end of the test, reflecting chloride content of 820mM to 930mM in the pore solution surrounding the sensors, which differs 5-10% from the chloride concentration in the external solution. The water soluble chloride content in the cement pate, as destructively measured wet chemically by Volhard method and photometry, was in the range of 1100mM - 1300mM i.e. about 30-50% more than the chloride concentration in the external solution. This difference of maximum 50% in the recorded chloride levels is attributed to the fact that the sensors “read” the average amount of free chloride at the interface sensor/cement paste, while the destructively measured water soluble chloride reflects the average free (with possible contribution of physically bound chloride) in the total volume of analyzed cement paste. It can be concluded that for the conditions of this experiment, more reliable free chloride content is measured via the sensors’ readings. Hence, if chloride thresholds for corrosion initiation are to be determined, the sensors’ readings will be more representative and accurate if compared to destructive water soluble chloride determination.


2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Pravin Deshpande ◽  
Sanket Vathare ◽  
Shashikant Vagge ◽  
Elena Tomšík ◽  
Jaroslav Stejskal

AbstractThe coaxial coating of multi-wall carbon nanotubes (MWCNT) with poly(aniline) (PANI) was synthesised and a paint was prepared containing conducting PANI-MWCNT composite. The corrosion protection performance was assessed by open circuit potential measurements, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The corrosion rate of low-carbon steel coated with 1.5 mass % of PANI-MWCNT-based paint in 3.5 mass % sodium chloride solution was found to be 0.037 mm y−1, about 5.2 times lower than that of unpainted low-carbon steel and 3.6 times lower than that of epoxy painted steel.


2014 ◽  
Vol 805 ◽  
pp. 167-171 ◽  
Author(s):  
F.S. Silva ◽  
P.H. Suegama ◽  
W.P. Silva ◽  
A.W. Rinaldi ◽  
N.L.C. Domingues ◽  
...  

Schiff bases m-toluene N-Salicylideneaniline (m-TOL), (B) m-nitro-N- Salicylideneaniline (m-NTR) and (C) m-methoxy-N-salicylideneaniline (m-MTX) and cerium ions were studied added to 3.5 wt.% NaCl solution and added to the hybrid film based tetraethoxysilane (TEOS) e 3-methacryloxypropyltrimethoxysilane (MPTS). The polarization measurements showed lower current densities for the steel in NaCl with m-MTX, indicating that the m-MTX may be acting as an inhibitor. The hybrid films were doped with the m-MTX, Ce (III) or Ce (IV). Electrochemical measurements of open circuit potential (EOC), polarization curves and electrochemical impedance spectroscopy (EIS), were used to evaluate the corrosion behavior of the hybrid films. According Electrochemical Impedance measurements, all hybrid films, provided protection to the carbon steel. The films doped with Ce (IV), provided greater protection than the other, which indicates that this is the most suitable dopant for use in films.


2017 ◽  
Vol 64 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Xiaochao Xian ◽  
Chenglong Nai ◽  
Lixin Li ◽  
Shuo Zhao

Purpose Immersion is one of the key steps during the preparation of silane-based hybrid films, which has important effects on the performance of films after curing. In this paper, the formation process of Zr-doped silane film (i.e. the adsorption of silane and deposition of zirconium compounds) on carbon steel immersed in Zr(NO3)4/silane mixed solutions was investigated. Design/methodology/approach The method of in situ monitoring the open circuit potential of a two-electrode system, consisting of carbon steel and saturated calomel electrode, was used. The effects of immersion conditions (i.e. the concentration of Zr(NO3)4 and pH of Zr(NO3)4/silane mixed solution) on the open circuit potential were investigated in detail. Furthermore, the surface coverage rate of different cured films (i.e. Zr cured film, silane cured film and Zr/silane composite cured film) after curing on carbon steel was calculated according to the results of polarization curves. Electrochemical impedance spectroscopy (EIS) was used to study the self-healing property of Zr-doped silane cured film. Findings The results indicate that in Zr(NO3)4/silane mixed solutions, most zirconium compounds deposit on the surface of carbon steel at the initial immersing stage, then the adsorption of silane on the residual surface of carbon steel dominates the following immersing stage. EIS results show that the Zr-doped cured film has improved self-healing property. Originality/value First, the method of in situ monitoring the open-circuit potential of two-electrode system was applied to investigate the deposition of Zr and the adsorption of silane on carbon steel immersed in Zr(NO3)4/silane mixed solutions. Second, the formation process of Zr-doped silane film was proposed.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1553
Author(s):  
Fangping Ma ◽  
Qing Zeng ◽  
Xiangyu Lu ◽  
Tong Wu ◽  
Xiao Lu ◽  
...  

Application of low-nickel stainless steel anchor was one of the economical and effective methods to solve the durability problem of slope engineering. At present, there are scarce reports about corrosion characteristics of low-nickel stainless steel in various underground waters. For investigating the corrosion initiation of stainless steel anchor bolt in corrosive underground water, the effect of SO42−, HCO3− and pH value on the corrosion behavior of 201 low-nickel stainless steel was studied via electrochemical methods. As the SO42− concentration, HCO3− concentration or pH value increase, the open circuit potential and polarization resistance increase, while the double-layer capacitance, donor density and passive current density decrease. The results indicate that corrosion is inhibited by SO42−, HCO3− and OH− in underground water. In addition, the inhibitive efficiency of SO42− and HCO3− increases with the SO42− and HCO3− concentration.


Sign in / Sign up

Export Citation Format

Share Document