Radiation resistance of nano-structured tungsten-rhenium sheet

2013 ◽  
Vol 1513 ◽  
Author(s):  
David E.J. Armstrong ◽  
Steve G. Roberts

ABSTRACTTungsten is one the most important material for both plasma facing and structural applications in current designs for advanced divertors. Recent work has shown that composites can be manufactured from nanostructured tungsten foils which show significantly higher toughness than monolithic tungsten, but there is no data on the radiation resistance of such materials. In this study W-5 wt% Re foil in both an as rolled and annealed condition was implanted with 2MeV W+ ions to two damage levels, 0.07 and 0.4 dpa. The change in hardness was measured using nanoindentation. An increase in hardness was seen in both materials at both damage levels, with more hardening seen for the 0.4 dpa implanted samples. However the increase in hardness due to ion implantation was 2.6 times higher in the annealed material as compared to the as rolled material. This is due to the smaller grain size and higher dislocation density providing more sinks for the irradiation produced defects in the as rolled material as compared to the annealed material. Thus showing that unannealed tungsten foils are superior for use in applications in which they will see significant levels of radiation damage.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


2011 ◽  
Vol 409 ◽  
pp. 597-602
Author(s):  
Yuichi Mizuno ◽  
Kenji Okushiro ◽  
Yoshiyuki Saito

Grain boundary migration in materials under severe plastic deformation was simulated by the phase field methods. The interface energy and dislocation density on growth kinetics were simulated on systems of 2-dimensional lattice. .In inhomogeneous systems grain size distributions in simulated grain structures were binodal distributions. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. Effect of dislocation on thermodynamic stability was taken into consideration. Dislocation density distribution was calculated by a equation based on the diffusion-reaction equation.. Scaled grain size distribution was known to be affected by the dislocation.


1985 ◽  
Vol 15 (6) ◽  
pp. 1237-1247 ◽  
Author(s):  
A Audouard ◽  
A Benyagoub ◽  
L Thome ◽  
J Chaumont

2009 ◽  
Vol 409 ◽  
pp. 137-144 ◽  
Author(s):  
Stojana Veskovic-Bukudur ◽  
Tanja Leban ◽  
Milan Ambrozic ◽  
Tomaž Kosmač

The wear resistances of four standard-grade high-alumina ceramics were evaluated and related to their machining ability. Three of the material grades contained 96% of alumina and 4% of either calcium silicate, or magnesium silicate, or manganese titanate in the starting-powder composition. The nominal alumina content in the fourth material was 99.7%. The specimens were fabricated using a low-pressure injection-molding forming technique, followed by thermal de-binding and sintering. After sintering the four materials differ significantly in their grain size, bending strength and Vickers hardness. No direct relationship between the microstructural parameters and the mechanical properties was found, but there was a grain-size dependence of the surface finish after grinding under industrial conditions. The two silicate-containing ceramics exhibited considerably higher wear resistances than the two silicate-free ceramics, but no direct relationship between the abrasive wear rate during grinding and the cutting time was observed. The cutting ability represents a valuable material characteristic for industrial practice, but it should not be directly used for predicting the wear rate during grinding. Quantitative differences in the cutting time and abrasive wear rate were manifested in the different topographies of the worn surfaces. Cutting resulted in relatively large area fractions of plastically deformed surfaces, whereas pullouts dominated the worn surfaces after grinding.


2016 ◽  
Vol 838-839 ◽  
pp. 404-409
Author(s):  
Roman Mishnev ◽  
Iaroslava Shakhova ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

A Cu-0.87%Cr-0.06%Zr alloy was subjected to equal channel angular pressing (ECAP) at a temperature of 400 °C up to a total strain of ~ 12. This processing produced ultra-fine grained (UFG) structure with an average grain size of 0.6 μm and an average dislocation density of ~4×1014 m-2. Tensile tests were carried out in the temperature interval 450 – 650 °C at strain rates ranging from 2.8´10-4 to 0.55 s-1. The alloy exhibits superplastic behavior in the temperature interval 550 – 600 °C at strain rate over 5.5´10-3 s-1. The highest elongation-to-failure of ~300% was obtained at a temperature of 575 °C and a strain rate of 2.8´10-3 s-1 with the corresponding strain rate sensitivity of 0.32. It was shown the superplastic flow at the optimum conditions leads to limited grain growth in the gauge section. The grain size increases from 0.6 μm to 0.87 μm after testing, while dislocation density decreases insignificantly to ~1014 m-2.


2006 ◽  
Vol 88 (24) ◽  
pp. 241921 ◽  
Author(s):  
A. Kinomura ◽  
A. Chayahara ◽  
Y. Mokuno ◽  
N. Tsubouchi ◽  
Y. Horino ◽  
...  

2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


Sign in / Sign up

Export Citation Format

Share Document