Synthesis and Study of Carbon Nanotubes by the Spray Pyrolysis Method Using Different Carbon Sources.

2015 ◽  
Vol 1752 ◽  
pp. 31-38
Author(s):  
Beatriz Ortega Garcia ◽  
Oxana Kharissova ◽  
Francisco Servando Aguirre-Tostado ◽  
Rasika Dias

ABSTRACTAccording to the reports of Z.E. Horvath et al [1] and Liu Yun-quan et al [5], carbon nanotubes can be synthesized by spray pyrolysis from different carbon sources (n-pentane, n-hexane, n-heptane, cyclohexane, toluene and acrylonitrile) and several metallocene catalysts (ferrocene, cobaltocene and nickelocene). This paper describes two different existing methods for growth of carbon nanotubes and the influence of applied parameters (oven temperature, synthesis time, catalyst concentration, carrier gas flow and solution flow) on the CNT's morphology. Also, a possible influence of number of carbons in carbon sources and structures of their compounds (linear or aromatic) on properties of formed carbon nanotubes. Transmission Electron Microscopy (TEM), Infrared Spectroscopy (FTIR) and Raman spectroscopy were applied for characterization of obtained materials.

2020 ◽  
Vol 14 (2) ◽  
pp. 153-162
Author(s):  
Beatriz O. García ◽  
Oxana V. Kharissova ◽  
H.V. Rasika Dias ◽  
Boris I. Kharisov

Background: In this work, various carbon nanotubes (MWCNTs) were synthetized by the spray pyrolysis method. Resulting nanoforest-like and bamboo-like carbon nanotubes, as well as Yjunctions of carbon nanotubes, possess different shapes and morphology, depending on the kind of carbon source used and on the number of iron particles on the furnace tube surface, which derives from various concentrations of ferrocene catalyst. Methods: We used the spray pyrolysis method, using different carbon sources (n-pentane, n-hexane, nheptane, and acrylonitrile) as precursors and two different concentrations of ferrocene as a catalyst. Reactions of hydrocarbon decomposition were carried out at 800oC. The solution (hydrocarbon and catalyst) was introduced with a syringe, with a flow of 1 mL/min and the synthesis time of 20 min. Argon was used as carrier gas (1000 L/min). Preheater and oven temperatures were selected 180°C and 800°C, respectively, for each carbon source. The solution passed into a quartz tube placed in an oven. Results: According to the studies of carbon nanostructures, obtained from different precursors, it can be proposed that the structures synthesized from n-pentane, n-hexane and n-heptane are formed by the root growth method. The growth mechanism of MWCNTs was studied, confirming that the root growth formation of products takes place, whose parameters also depend on furnace temperature and gas flow rate. Dependence of interlayer distance (0.34-0.50 nm) in the formed MWCNTs on precursors and reaction conditions is also elucidated. The formation of carbon nanotubes does not merely depend on carbon precursors but also has strong correlations with such growth conditions as different catalyst concentrations, furnace temperature and gas flow rate. Such parameters as the amount of catalyst and synthesis time are also needed to be considered, since they are important to find minor values of these parameters in the synthesis of forest-like carbon nanotubes and other structures such as bamboo-like carbon nanotubes and Y-junctions in carbon nanotubes. Conclusions: As a result of the evaluation of interlayer distance in CNTs formed from different carbon sources, a standard value of interlayer distance normally for CNTs is 0.34 nm and for pentane A (0.5 wt.%), hexane B (1 wt.%), toluene A (0.5 wt.%) the range is from 0.33 to 0.35 nm. In case of pentane and acrylonitrile, under an increase of the catalyst concentration, an increase of the value of interlayer distance takes place from 0.35 and 0.4 to 0.4 and 0.5 nm, respectively, but for hexane, heptane and cyclohexane, an increase of the catalyst concentration maintains the same interlayer distance. This involves the use of lower quantities of raw materials and, therefore less cost for obtaining these materials.


2010 ◽  
Vol 518 (23) ◽  
pp. 6756-6760 ◽  
Author(s):  
Ishwor Khatri ◽  
Naoki Kishi ◽  
Jianhui Zhang ◽  
Tetsuo Soga ◽  
Takashi Jimbo ◽  
...  

2017 ◽  
Vol 23 (S1) ◽  
pp. 1928-1929 ◽  
Author(s):  
E. Uriza-Vega ◽  
M. Herrera-Ramírez ◽  
C. Lopez-Meléndez ◽  
I. Estrada-Guel ◽  
E. Martínez-Franco ◽  
...  

2011 ◽  
Vol 221 ◽  
pp. 235-239 ◽  
Author(s):  
Yuan Chao Liu ◽  
Bao Min Sun ◽  
Zhao Yong Ding

Synthesis of carbon nanotubes from V-type pyrolysis flame is a kind of novel method. It needs simple laboratory equipments and normal atmosphere pressure. The V-type pyrolysis flame experimental system is introduced. Carbon source is the carbon monoxide and heat source is from acetylene/air premixed flame. Pentacarbonyl iron, served as catalyst, is transported by spray- pyrolysis method into the flame. The carbon nanotubes were characterized by scanning electron microscope and transmission electron microscope. This study aims to find the formation rule of carbon nanotubes from the V-type pyrolysis flame in different sampling times. The carbon nanotubes with less impurity and high yield were captured successfully in the V-type pyrolysis flame. The diameter of carbon nanotubes was approximate between 10nm and 20nm, and its length was dozens of microns. When the sampling time was below 3 minutes, the growth of carbon nanotubes came into the preparation growth period. The length of the carbon nanotubes increased gradually and the diameter had no obvious change with the extension of sampling time. When the sampling time was continued to the 5th minute, the growth of carbon nanotubes came into the exuberant growth period. The carbon nanotubes growth was finished within 5minutes. Longer sampling time was meaningless after the carbon nanotubes formation.


Author(s):  
M. Shunmugasundaram ◽  
A. Praveenkumar ◽  
L. Ponraj Sankar ◽  
S. Sivasankar

Mechanical properties of materials are enhanced by different methods to increase the usage of the materials. In this research spray pyrolysis method is employed to increase the mechanical characteristics of three different materials. The tin oxide is chosen as coated material and aluminium, brass, mild steel are selected as substrate materials. The 500nm thin film is developed over the substrate materials by spray pyrolysis. The substrate temperature are chosen as 300? C for aluminium, 400? C for brass and mildsteel. Nozzle to substrate distance is 0.4 m, substrate temperature is 300? C for aluminium and 400? C for solution concentration as 0.2 mole and solution flow rate is 1ml/min are selected for constant deposition parameters. The hardness and tensile strength result clearly shows that strength is increased by adding the coating over the surface. The material is heated above crystallization temperature and SnO2 increases the tensile and hardness strength of the materials. The triangular metrological microscope is used to examine the microstructure of non coated and coated substrate materials. The microstructural analysis is showed that the uncoated surface of the substrate material is full of rough and pores. And displays that the tin oxide coated surface of the substrates after the initial deposition disclosed a surface with a agglomeration of tin oxide in homogeneous and uniform than the uncoated substrates.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Daisuke Ogawa ◽  
Ryo Kitaura ◽  
Takeshi Saito ◽  
Shinobu Aoyagi ◽  
Eiji Nishibori ◽  
...  

Thermally fragile tris(η5-cyclopentadienyl)erbium (ErCp3) molecules are encapsulated in single-wall carbon nanotubes (SWCNTs) with high yield. We realized the encapsulation of ErCp3with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+) is confirmed by X-ray absorption spectrum.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040005 ◽  
Author(s):  
Congzhi Zhang ◽  
Tao Han ◽  
Wei Wang ◽  
Jin Zhang

Dried plum-like ZnO assemblies consisting ZnO nanoparticles were synthesized by an ultrasonic spray pyrolysis method (USP). ZnO assemblies were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS) and field-emission transmission electron microscopy (TEM). The results show the size of ZnO assemblies is in the range of 300–870 nm, and that of ZnO nanoparticles is from 33 nm to 39 nm. The microstructure and size of ZnO assemblies were successfully controlled by the concentration of the precursor solution.


2018 ◽  
Vol 281 ◽  
pp. 22-27
Author(s):  
Zhao Chen ◽  
Rong Zheng Liu ◽  
Jia Xing Chang ◽  
Ma Lin Liu

Accident Tolerant fuel (ATF) concept was put forward after the Fukushima accident. Among different kinds of ATF, Fully Ceramic Microencapsulated Fuels (FCM) have been paid more and more attention in recent years. SiC matrix is one of the important constituent parts in FCM fuel system, which is sintered from kinds of SiC powders. In this study, SiC nanoparticles were prepared by Fluidized Bed Chemical Vapor Deposition (FB-CVD) method using Hexamethyldisilane (HMDS) as precursor, aimed at reducing the sintering temperature and pressure of FCM-SiC matrix. Experiments of different temperatures with different argon gas ratios were carried out. It was found that good crystal SiC could be obtained from 850°C to 1250°C, under pure hydrogen or H2: Ar=15:1. Different H2 carrier gas flow rate tests were also conducted. With the increase of hydrogen flow rates, the SiC was transformed from 3C-SiC to other types, such as 6H or 15R, but no significant effect was found on particle shape. Based on the characterizations of XRD, SEM and TEM, the results showed the spherical SiC nanoparticles could be obtained as well as 20 nanometers in diameter at the condition of 1150°C, H2: Ar=15:1, under different hydrogen flow rates. Different hydrogen flow rates had little influence on the particle size of SiC nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document