Organic Hydrogel Templates for Tunable Mesoporous Silica Hybrid Materials

2015 ◽  
Vol 1721 ◽  
Author(s):  
Jennifer L. Kahn ◽  
Necla Mine Eren ◽  
Osvaldo Campanella ◽  
Sherry L. Voytik-Harbin ◽  
Jenna L. Rickus

ABSTRACTPorous coatings at the surface of living cells have application in human cell transplantation by controlling the transport of biomolecules to and from the cells. Sol-gel-derived mesoporous silica materials are good candidates for such coatings, owing to their biocompatibility, facile solution-based synthesis conditions, and thin film formation. Diffusion and transport across the coating correlates to long-range microstructural properties, including pore size distribution, porosity, and pore morphology. Here, we investigated collagen-fibril matrices with known biocompatibility to serve as templating systems for directed silica deposition. Type 1 collagen oligomers derived from porcine skin are extensively characterized such that we can predict and customize the final collagen-fibril matrix with respect to fibril density, interfibril branching and viscoelasticity. We show that these matrices template and direct the deposition of mesoporous silica at the level of individual collagen fibrils. We varied the fibril density, silicic acid concentration, and time of exposure to silicifying solution and characterized the resulting hybrid materials by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and rheology. Microstructural properties of the collagen-fibril template are preserved in the silica surface of hybrid materials. Results for three different collagen fibril densities, corresponding to shear storage moduli of 200 Pa, 1000 Pa, and 1600 Pa, indicate that increased fibril density increases the absolute amount of templated silica when all other silica synthesis conditions are kept constant. Additionally, mechanical properties of the hybrid material are dominated by the presence of the silica coating rather than the starting collagen matrix stiffness.

Author(s):  
Elisa Bindini ◽  
Tanja Lüdtke ◽  
Dorleta Otaegui ◽  
Marco Möller ◽  
Ryma Haddad ◽  
...  

Surface engineering of metal-organic frameworks (MOFs) with a mesoporous silica coating can improve MOF mechanical properties and provide an easy way to decorate MOF nanoparticles with organic or biological molecules...


2002 ◽  
Vol 726 ◽  
Author(s):  
Carole C. Perry ◽  
David Eglin ◽  
Saad A.M. Ali ◽  
Sandra Downes

AbstractHybrid poly(L-lactic acid)-silica materials for potential use in orthopaedic applications have been prepared by a sol-gel method using an experimental design approach to investigate the effect of synthesis variables separately and together on the physical form of the organic polymer. The five factors investigated were the molar ratios of tetraethyl orthosilicate (TEOS)/Poly(Llactic acid) (PLLA), Toluene/PLLA, EtOH/TEOS, Water/TEOS and HCl (catalyst)/TEOS. All other synthesis conditions were kept constant. X-Ray powder diffraction (Statton's graphical method) and differential scanning calorimetry were used to assess the extent of polymer crystallinity in the hybrid materials. In accordance with other studies, increasing the molar ratio of TEOS/PLLA lead to increasing incorporation of the organic polymer into the silica network. Increase of the toluene/PLLA molar ratio lead to an increase in the crystallinity of the polymer phase. As our studies investigated the effect of synthesis variables simultaneously it was possible to identify, for the first time, that interactions between specific reactants are important in the development of the two structural components of this hybrid system. The most important of these was the TEOS/PLLA*H2O/TEOS interaction that may indicate that silica species from hydrolysed TEOS interact with the PLLA phase possibly via hydrogen bonding and leads to the lowering of the crystalline order of the polymer The results from this study give useful information on the ability of the organic polymer and the silica phase to form interpenetrating networks, an important requirement for the generation of a potential hybrid polyester-silica biomaterial for orthopaedic applications.


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2020 ◽  
Vol 389 (1) ◽  
pp. 1900057
Author(s):  
Michelina Catauro ◽  
Elisabetta Tranquillo ◽  
Giovanni Dal Poggetto ◽  
Daniele Naviglio ◽  
Federico Barrino

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1586
Author(s):  
Michelina Catauro ◽  
Pavel Šiler ◽  
Jiří Másilko ◽  
Roberta Risoluti ◽  
Stefano Vecchio Ciprioti

The present study investigated the structure, morphology, thermal behavior, and bacterial growth analysis of novel three-component hybrid materials synthesized by the sol-gel method. The inorganic silica matrix was weakly bonded to the network of two organic components: a well-known polymer such as polyethylene glycol (PEG, average molar mass of about 4000 g/mol), and an antioxidant constituted by chlorogenic acid (CGA). In particular, a first series was made by a 50 wt% PEG-based (CGA-free) silica hybrid along with two 50 wt% PEG-based hybrids containing 10 and 20 wt% of CGA (denoted as SP50, SP50C10 and SP50C20, respectively). A second series contained a fixed amount of CGA (20 wt%) in silica-based hybrids: one was the PEG-free material (SC20) and the other two contained 12 and 50 wt% of PEG, respectively (SP12C20 and SP50C20, respectively), being the latter already included in the first series. The X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images of freshly prepared materials confirmed that all the materials were amorphous and homogeneous regardless of the content of PEG or CGA. The thermogravimetric (TG) analysis revealed a higher water content was adsorbed into the two component hybrids (SP50 and SC20) because of the availability of a larger number of H-bonds to be formed with water with respect to those of silica/PEG/CGA (SPC), where silica matrix was involved in these bonds with both organic components. Conversely, the PEG-rich materials (SP50C10 and SP50C20, both with 50 wt% of the polymer) retained a lower content of water. Decomposition of PEG and CGA occurred in almost the same temperature interval regardless of the content of each organic component. The antibacterial properties of the SiO2/PEG/CGA hybrid materials were studied in pellets using either Escherichia coli and Enterococcus faecalis, respectively. Excellent antibacterial activity was found against both bacteria regardless of the amount of polymer in the hybrids.


1994 ◽  
Vol 6 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Poly(methylsilsesquixoane) network (silicone)-polyimide hybrid materials were successfully prepared by the sol-gel reaction of methyltriethoxysilane (MTES). The ethoxysilyl group in MTES was hydrolyzed and polycondensed in the solution of the polyamic acid, derived from pyromellitic dianhydride and bis(4-aminophenyl)ether, in N,N-dimethyl-acetamide (DMAc). The hybrid films were obtained by casting the reaction mixture, followed by heating up to 300°C. The hybrid materials containing 0-60wt% of silicone afforded flexible films. The films containing less than 7 wt% silicone were yellow and transparent, whereas the films with higher silicone content were yellow and opaque. Silicone particles with a diameter of around 1-10 μm were observed in the fracture surface of the hybrid films by scanning electron microscopy. Although the tensile strength and tensile modulus of the films obtained decreased with increasing silicone content. the value of the elongation at break remained at 60% up to 30% silicone content.


2009 ◽  
Vol 2009 (23) ◽  
pp. 3895-3905 ◽  
Author(s):  
Adam W. Franz ◽  
Zhou Zhou ◽  
Raluca Turdean ◽  
Alex Wagener ◽  
Biprajit Sarkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document