Design and Synthesis of Nanoparticle Contrast Agents for Spectral (color) X-Ray Imaging

2015 ◽  
Vol 1719 ◽  
Author(s):  
Prakash D. Nallathamby ◽  
Tracie L. Mcginnity ◽  
Lisa E. Cole ◽  
Margaret E. Best ◽  
Tracy Vargo-Gogola ◽  
...  

ABSTRACTComputed tomography (CT) is an important tool in clinical diagnostic imaging enabling three-dimensional anatomic imaging at high spatial resolution with short scan times. However, X-ray attenuation differences in physiological fluids and soft tissues are relatively small, requiring the use of contrast agents to achieve sufficient imaging contrast. Recent advances in energy-sensitive X-ray detectors have made spectral (color) CT commercially feasible by unmixing the energy-dependent attenuation profile of different materials and will potentially enable molecular imaging in CT. In order to leverage these capabilities for diagnostic imaging, we are developing a spectral library of nanoparticle contrast agents with K-shell absorption edges spaced at least 10 keV apart. The objective of this study was to demonstrate the ability of spectral CT to simultaneously detect up to three different contrast agents and unmixed their signals to create color images. Gadolinium oxide (Gd), hafnium oxide (Hf) and gold (Au) were chosen due to exhibiting K-edges spaced 10-20 keV apart. Core-shell nanoparticles of each composition were synthesized by various methods to have a core diameter of 15-20 nm and were coated with a silica shell at least 2-4 nm in thickness to create a common platform for surface functionalization. The contrast agents were imaged in a soft tissue equivalent phantom using source-side method for spectral CT imaging. The source-side approach utilized monochromatic synchrotron radiation at the Argonne National Laboratory which, while not clinically applicable, served as a gold standard due to providing the highest spectral resolution. The nanoparticles designed for this study have broad applications in biomedical imaging due to their modular assembly, potential for enabling multi-modal detection, and surface functionalization with biomolecules (e.g., antibodies, peptides or enzymes) for active targeting.

2012 ◽  
Vol 27 (4) ◽  
pp. 256-262 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
H. Wu ◽  
M. Suchomel

M2(dhtp)·nH2O (M = Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate), known as MOF74, is a family of excellent sorbent materials for CO2 that contains coordinatively unsaturated metal sites and a honeycomb-like structure featuring a broad one-dimensional channel. This paper describes the structural feature and provides reference X-ray powder diffraction patterns of these four isostructural compounds. The structures were determined using synchrotron diffraction data obtained at beam line 11-BM at the Advanced Photon Source (APS) in the Argonne National Laboratory. The samples were confirmed to be hexagonal R 3 (No. 148). From M = Mn, Co, Ni, to Zn, the lattice parameter a of MOF74 ranges from 26.131 73(4) Å to 26.5738(2) Å, c from 6.651 97(5) to 6.808 83(8) Å, and V ranges from 3948.08 Å3 to 4163.99 Å3, respectively. The four reference X-ray powder diffraction patterns have been submitted for inclusion in the Powder Diffraction File (PDF).


Author(s):  
R. W. McClung ◽  
D. R. Johnson

Following an assessment of needs for NDT and characterization of ceramics for the DOE program, Ceramic Technology for Advanced Heat Engines (CTAHE), many NDT projects have been implemented under the sponsorship of CTAHE to address the needs. Tasks at Argonne National Laboratory have involved X-ray computed tomography and nuclear magnetic resonance imaging. The Oak Ridge National Laboratory has emphasized high-frequency ultrasonics, low-voltage radiography, and an advanced system for X-ray computed tomography. A brief investigation was made by Radiation Sciences, Inc., into the feasibility of synchrotron-computed tomography for ceramics. New programs recently initiated at Allison and Garrett integrate ultrasonics, radiography, and other methods into a major effort on life prediction. New programs at Norton and GTE on advanced processing of ceramics also place heavy emphasis on several methods of NDT for process development and control. Initial work on NDT standards has begun in ASTM Committees E-7 and C-28.


Author(s):  
Katarzyna E Matusik ◽  
Daniel J Duke ◽  
Nicholas Sovis ◽  
Andrew B Swantek ◽  
Christopher F Powell ◽  
...  

Gasoline direct injection (GDI) nozzles are manufactured to meet geometric specifications with length scales onthe order of a few hundred microns. The machining tolerances of these nominal dimensions are not always knowndue to the difficulty in accurately measuring such small length scales in a nonintrusive fashion. To gain insight intothe variability of the machined dimensions as well as any effects that this variability may have on the fuel spraybehavior, a series of measurements of the internal geometry and fuel mass distribution were performed on a set ofeight nominally duplicate GDI “Spray G” nozzles provided by the Engine Combustion Network. The key dimensionsof each of the eight nozzle holes were measured with micron resolution using full spectrum x-ray tomographicimaging at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. Fuel densitydistributions at 2 mm downstream of the nozzle tips were obtained by performing x-ray radiography measurementsfor many lines of sight. The density measurements reveal nozzle-to-nozzle as well as hole-to-hole density variations.The combination of high-resolution geometry and fuel distribution datasets allows spray phenomena to be linked tospecific geometric characteristics of the nozzle, such as variability in the hole lengths and counterbore diameters,and the hole inlet corner radii. This analysis provides important insight into which geometrical characteristics ofthe nozzles may have the greatest importance in the development of the injected sprays, and to what degreethese geometric variations might account for the total spray variability. The goal of this work is then to further theunderstanding of the relationship between internal nozzle geometry and fuel injection, provide input to improvecomputational models, and ultimately aid in optimizing injector design for higher fuel efficiency and lower emissionsengines.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4766


2005 ◽  
Vol 61 (2) ◽  
pp. 129-132 ◽  
Author(s):  
E. N. Caspi ◽  
B. Pokroy ◽  
P. L. Lee ◽  
J. P. Quintana ◽  
E. Zolotoyabko

High-resolution synchrotron powder diffraction measurements were carried out at the 32-ID beamline of the Advanced Photon Source of Argonne National Laboratory in order to clarify the structure of geological aragonite, a widely abundant polymorph of CaCO3. The investigated crystals were practically free of impurity atoms, as measured by wavelength-dispersive X-ray spectroscopy in scanning electron microscopy. A superior quality of diffraction data was achieved by using the 11-channel 111 Si multi-analyzer of the diffracted beam. Applying the Rietveld refinement procedure to the high-resolution diffraction spectra, we were able to extract the aragonite lattice parameters with an accuracy of about 20 p.p.m. The data obtained unambiguously confirm that pure aragonite crystals have orthorhombic symmetry.


1997 ◽  
Vol 3 (S2) ◽  
pp. 905-906
Author(s):  
Mark L. Rivers ◽  
Stephen R. Sutton ◽  
Peter Eng ◽  
Matthew Newville

The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation synchrotron x-ray source, optimized for producing x-rays from undulators. Such undulator sources provide extremely bright, quasi-monochromatic radiation which is ideal for an x-ray microprobe. Such microprobes can be used for trace element quantification with x-ray fluorescence, or for chemical state determination with x-ray absorption spectroscopy. The GeoSoilEnviroCARS (GSECARS) sector at the APS is building an x-ray microprobe for research in earth, planetary, soil and environmental sciences.The GSECARS undulator source is a standard APS Undulator “A” which is a 3.3 cm period device with 72 periods. The energies of the undulator peaks can be varied by adjusting the gap, and hence the magnetic field of the undulator. The energy of the first harmonic can be varied in this way from approximately 3.1 keV to 14 keV. A measured undulator spectrum is shown in Figure 1.


Author(s):  
O. Coutier-Delgosha ◽  
A. Vabre ◽  
M. Hocevar ◽  
R. Delion ◽  
A. Dazin ◽  
...  

The present paper presents an experimental method to measure velocity fields in a cavitating flow. Dynamics of the liquid phase and of the bubbles are both investigated. The measurements are based on ultra fast X-ray imaging performed at the APS (Advanced Photon Source) of the Argonne National Laboratory. This is collaboration between research teams devoted to fluid mechanics (LML laboratory, Laboratory for water and turbine machines) and experts in X-ray imaging (French atomic commission, Argonne National Laboratory). The experimental device consists of a millimetric Venturi test section associated with a transportable hydraulic loop. Various configurations of velocity, pressure, and temperature have been investigated. This first paper focuses on the experimental equipment and process, and also the description of the image processing which is performed to analyze the results and obtain the velocity fields of both phases within the cavitating areas. Promising preliminary results are also presented.


2018 ◽  
Vol 51 (3) ◽  
pp. 867-882 ◽  
Author(s):  
Jan Ilavsky ◽  
Fan Zhang ◽  
Ross N. Andrews ◽  
Ivan Kuzmenko ◽  
Pete R. Jemian ◽  
...  

Following many years of evolutionary development, first at the National Synchrotron Light Source, Brookhaven National Laboratory, and then at the Advanced Photon Source (APS), Argonne National Laboratory, the APS ultra-small-angle X-ray scattering (USAXS) facility has been transformed by several new developments. These comprise a conversion to higher-order crystal optics and higher X-ray energies as the standard operating mode, rapid fly scan measurements also as a standard operational mode, automated contiguous pinhole small-angle X-ray scattering (SAXS) measurements at intermediate scattering vectors, and associated rapid wide-angle X-ray scattering (WAXS) measurements for X-ray diffraction without disturbing the sample geometry. With each mode using the USAXS incident beam optics upstream of the sample, USAXS/SAXS/WAXS measurements can now be made within 5 min, allowingin situandoperandomeasurement capabilities with great flexibility under a wide range of sample conditions. These developments are described, together with examples of their application to investigate materials phenomena of technological importance. Developments of two novel USAXS applications, USAXS-based X-ray photon correlation spectroscopy and USAXS imaging, are also briefly reviewed.


Author(s):  
Doĝa Gürsoy ◽  
Tekin Biçer ◽  
Jonathan D. Almer ◽  
Raj Kettimuthu ◽  
Stuart R. Stock ◽  
...  

A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency.


2008 ◽  
Vol 1074 ◽  
Author(s):  
Yoshio Kobayashi ◽  
Kiyoto Misawa ◽  
Motohiro Takeda ◽  
Noriaki Ohuchi ◽  
Atsuo Kasuya ◽  
...  

ABSTRACTIodine compounds have been used as X-ray contrast agents in the field of medicine, because of their low transmittance property for X-ray. The iodine compounds may provoke adverse events as allergic reactions in patients, so that they can not be administered to such people. Core-shell nanoparticles are good candidates for prevention of allergic reactions, because the shell materials can keep the contrast agents from living systems. We have proposed a method for silica-coating of iodine compounds as AgI nanoparticles. In the present work, properties of the silica-coated AgI nanoparticles such as colloidal stability, X-ray absorption and X-ray CT imaging were examined.Silica-coated AgI nanoparticles were prepared with Stöber method, which was performed with 2.3×10-5 M MPS, 11 M water, 0.01 M DMA and 0.01 M tetraethyl orthosilicate in the presence of 5×10-4 M AgI nanoparticles that were prepared from AgClO4 and KI. The particles had an AgI core size of ca. 15 nm and a silica shell thickness of ca. 20 nm.Since high iodine concentration in sample solution is desired for practical use as X-ray contrast agents, the colloid of as-prepared coated particles was concentrated with centrifugation. The particle colloid that was concentrated up to an AgI concentration as high as 0.4 M was colloidally stable in saline, and exhibited properties of X-ray absorption and X-ray contrasting comparable to a commercial X-ray contrast agent. Accordingly, the silica-coated AgI nanoparticles prepared in the present work are expected to be applied to a novel X-ray contrast agent.


Sign in / Sign up

Export Citation Format

Share Document