Synthesis and Electrochemical Properties of Polypyrrole Conducting Polymer in Sheath like Nanotube Arrays Structured over TiO2 for Supercapacitor Energy Storage Devices

2015 ◽  
Vol 1749 ◽  
Author(s):  
Navjot K. Sidhu ◽  
A.C. Rastogi

ABSTRACTThe vertical TiO2 nanotube arrays constituting the core of 3-D nanoscale electrode architecture were synthesized over Ti sheet by anodization. Such formed TiO2 nanotubes are electrically conducting and amorphous as confirmed by XRD studies. Nanotube morphology is affected by water content and in the present study, close-packed 3-4 μm long TiO2 nanotube arrays of 45-50 nm diameter are formed with 2% water as revealed by the transmission and scanning electron microscopy. The redox active polypyrrole sheath is created by ultra-short pulsed current electropolymerization. Electrochemical properties of the 3-D nanoscaled TiO2 nanotube core-polypyrrole sheath electrodes relevant to the energy storage were investigated using cyclic voltammetry (CV) plots, electrochemical impedance spectroscopy (EIS), Charge discharge (CD) tests. High areal capacitance density of 48 mF cm-2 and low charge transfer resistance 12 Ω cm-2 with least ion diffusion limitation are realized at optimized polypyrrole sheath thickness. The Raman spectra studies reveal anion at specific chain locations involve in the redox process.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 241
Author(s):  
Keishu Miki ◽  
Takeshi Watanabe ◽  
Shinji Koh

In research on enzyme-based biofuel cells, covalent or noncovalent molecular modifications of carbon-based electrode materials are generally used as a method for immobilizing enzymes and/or mediators. However, the influence of these molecular modifications on the electrochemical properties of electrode materials has not been clarified. In this study, we present the electrochemical properties of chemical vapor deposition (CVD)-grown monolayer graphene electrodes before and after molecular modification. The electrochemical properties of graphene electrodes were evaluated by cyclic voltammetry and electrochemical impedance measurements. A covalently modified graphene electrode showed an approximately 25-fold higher charge transfer resistance than before modification. In comparison, the electrochemical properties of a noncovalently modified graphene electrode were not degraded by the modification.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jialiang Tang ◽  
Vinodkumar Etacheri ◽  
Vilas G. Pol

Abstract The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.


2019 ◽  
Vol 12 (1) ◽  
pp. 194-205 ◽  
Author(s):  
Jin-Qi Xie ◽  
Ya-Qiang Ji ◽  
Jia-Hui Kang ◽  
Jia-Li Sheng ◽  
Da-Sha Mao ◽  
...  

Rationally designed interdigitated electrodes based on Cu(OH)2@FeOOH nanotube arrays are facilely converted in situ from catalytically deposited Cu current collector patterns for high-performance flexible micro-supercapacitor energy storage devices.


Author(s):  
Muhammad Ramzan Abdul Karim ◽  
Muhammad Noman ◽  
Khurram Imran Khan ◽  
Waseem Shehzad ◽  
Ehsan ul Haq ◽  
...  

Abstract Solvothermal synthesis of Ni-Co-MOF/graphene nanoplatelets (GNPs) nanocomposites was done for their potential application as electrode material in energy storage devices. Addition of GNPs and metallic precursors together with 2-methylimedazole in the same autoclave reactor produced smooth-nanoflakes like Ni-Co-MOF/GNPs nanocomposites as evaluated by SEM. XRD analysis showed the presence of GNPs where GNPs do not affect the growth of MOF crystals and Ni-Co-MOF crystalline phases remain unaffected in the composite structure. FTIR analysis confirmed the presence of organic links forming nickel-cobalt metal cations framework. Electrochemical testing(CV,EIS,GCD) of the produced composites demonstrated that GNPs addition can enhance the charge storage performance of MOFs nanocomposites. The largest cycle area and most discharge time have been shown by Ni-Co-MOF/GNP-50 composite electrode that delivered the highest specific capacity values (313 Cg-1@1 Ag-1), good reversibility and low internal resistance and charge transfer resistance. Moreover, Ni-Co-MOF/GNP-50 composite exhibited good thermal stability with 28% weight loss during thermogravimetric analysis. The electrochemical evaluations performed on asymmetric supercapacitor real device expressed a specific capacity of 136.5 [email protected] Ag-1, maximum energy density of 32.2 Whkg-1@425 Wkg-1 and maximum power density of 17000 [email protected] Whkg-1. Moreover, the device showed a stability performance of 92.5%@10 Ag-1 after 5000 CD cycles.


2005 ◽  
Vol 488-489 ◽  
pp. 681-684
Author(s):  
Yougen Tang ◽  
Yijun Xu ◽  
Zhuguang Lu ◽  
Bo Yun Huang

Effects of nickel coating on electrochemical properties of Mg2Ni hydrogen storage alloys were presented in this paper. X-ray diffraction ( XRD) and scanning electron microscope (SEM) were employed to examine the crystal structure and surface morphologies of the as-obtained bare and Ni-coated Mg2Ni alloys and their electrochemical properties were characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). Results showed that Ni coating not only decreased charge transfer resistance, but also decreased H atom diffusion resistance for Mg2Ni alloys. It was also found that Ni coating effectively improved the discharge capacity.


2013 ◽  
Vol 1547 ◽  
pp. 69-74 ◽  
Author(s):  
Navjot K. Sidhu ◽  
Ratheesh R. Thankalekshmi ◽  
A.C. Rastogi

ABSTRACTOrdered one dimensional polypyrrole conducting polymer structure as a shell over TiO2 nanotube arrays at the core were formed by pulsed current electropolymerization. TiO2 nanotubes with rippled wall structure are designed by action of water in the anodizing medium. This provides open tube structure supporting short diffusion length and increased accessibility of ions involved in redox transition for energy storage. Electrochemical properties evaluated by cyclic voltammetry and electrochemical impedance spectroscopy show specific capacitance of 34-44 mF.cm-2 and extremely low bulk and charge transfer resistances.


2011 ◽  
Vol 689 ◽  
pp. 350-354 ◽  
Author(s):  
Xiang Li Li ◽  
Chun Hua Xu ◽  
Zhi Lei Wen ◽  
Wen Jie Zhang

TiO2nanotube arrays were fabricated in the electrolyte containing 0.25wt% NH4F, 2.5vol% water and the ethylene glycol for various hours at room temperature by anodization of Ti foil in this paper. Some anodized specimens were annealed at 450°C for 3 hours. Electrochemical Impedance Spectroscopy (EIS) was employed to measure electrochemical parameters of anodized specimens. The morphology and crystalline structure of anodized products were characterized by Field Emission Scanning Electronic Microscopy (FESEM), X-ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM). A non-tube layer appears on nanotube arrays with the increase in anodization time. Anodized TiO2nanotube arrays have an amorphous structure, which transfers to anatase structure after annealing at 450°C. A new equivalent circuit R(CR(R(QR)(CR))) was proposed to fit EIS data. The results show that the charge transfer resistance at the electrode/electrolyte interface controls the electrochemical process of TiO2nanotubes.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1994
Author(s):  
Shujahadeen B. Aziz ◽  
Muaffaq M. Nofal ◽  
M. F. Z. Kadir ◽  
Elham M. A. Dannoun ◽  
Mohamad A. Brza ◽  
...  

This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10−3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte—impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density—were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38–3.59 Wh/kg and 757.58–347.22 W/kg, respectively.


2015 ◽  
Vol 1740 ◽  
Author(s):  
Navjot K. Sidhu ◽  
A.C. Rastogi

ABSTRACTNanocomposites in the 3-D nanoarchitecture using vertically aligned ZnO nanorods template to create conducting polymer Poly(3,4-ethylenedioxythiophene) (Pedot) nanotube and nanofibrous network structures using the facile electrochemical synthesis approach is described. Such electrodes structured at the nanoscale enable many fold enhancement of electroactive surface and interface with electrolyte facilitating absorption, ingress and diffusion of electrolyte ions which lead to increased energy and power density of supercapacitor devices. Electrochemical properties evaluated by electrochemical impedance show specific capacitance of 99 to162.99 mF.cm-2 and extremely low bulk and charge transfer resistance of 5.4 Ω.cm2 in comparison to ZnO and Pedot.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Minh Le Nguyen ◽  
Hoang Van Nguyen ◽  
Man Van Tran ◽  
Phung My Loan Le

In recent work, P2/P3-NaNi1/3Mn1/3Co1/3O2 (NaNMC) was obtained by the sol-gel process followed by calcination of the precursor at 900°C for 12 h. The electrochemical properties of NaNMC were investigated in the voltage range of 2.0–4.0 V. The material exhibited an initial discharge capacity of 107 mAh·g−1 and good capacity retention of 82.2% after 100 cycles. Ex situ XRD performance showed that the P3-phase transformed from the P3- to O1-phase and vice versa, while the P2-phase remained stable during the sodium intercalation. The kinetic of sodium intercalation of NaNMC upon reversible Na+ insertion/deinsertion was evaluated via a Galvanostatic Intermittence Titration Technique (GITT) and Electrochemical impedance spectroscopy (EIS). The diffusion coefficients of Na+ ion deduced from the GITT curve have a broad distribution ranging from 10−10 to 10−11 cm2·s−1 for the charging/discharging process. Besides, the evolution of diffusion coefficient and charge transfer resistance is consistent with the complex phase transition generally observed in sodium layered oxides.


Sign in / Sign up

Export Citation Format

Share Document