Effects of Ni Electroless Plating on Electrochemical Properties of Mg2 Ni Hydrogen Storage Alloys

2005 ◽  
Vol 488-489 ◽  
pp. 681-684
Author(s):  
Yougen Tang ◽  
Yijun Xu ◽  
Zhuguang Lu ◽  
Bo Yun Huang

Effects of nickel coating on electrochemical properties of Mg2Ni hydrogen storage alloys were presented in this paper. X-ray diffraction ( XRD) and scanning electron microscope (SEM) were employed to examine the crystal structure and surface morphologies of the as-obtained bare and Ni-coated Mg2Ni alloys and their electrochemical properties were characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). Results showed that Ni coating not only decreased charge transfer resistance, but also decreased H atom diffusion resistance for Mg2Ni alloys. It was also found that Ni coating effectively improved the discharge capacity.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 241
Author(s):  
Keishu Miki ◽  
Takeshi Watanabe ◽  
Shinji Koh

In research on enzyme-based biofuel cells, covalent or noncovalent molecular modifications of carbon-based electrode materials are generally used as a method for immobilizing enzymes and/or mediators. However, the influence of these molecular modifications on the electrochemical properties of electrode materials has not been clarified. In this study, we present the electrochemical properties of chemical vapor deposition (CVD)-grown monolayer graphene electrodes before and after molecular modification. The electrochemical properties of graphene electrodes were evaluated by cyclic voltammetry and electrochemical impedance measurements. A covalently modified graphene electrode showed an approximately 25-fold higher charge transfer resistance than before modification. In comparison, the electrochemical properties of a noncovalently modified graphene electrode were not degraded by the modification.


2015 ◽  
Vol 1749 ◽  
Author(s):  
Navjot K. Sidhu ◽  
A.C. Rastogi

ABSTRACTThe vertical TiO2 nanotube arrays constituting the core of 3-D nanoscale electrode architecture were synthesized over Ti sheet by anodization. Such formed TiO2 nanotubes are electrically conducting and amorphous as confirmed by XRD studies. Nanotube morphology is affected by water content and in the present study, close-packed 3-4 μm long TiO2 nanotube arrays of 45-50 nm diameter are formed with 2% water as revealed by the transmission and scanning electron microscopy. The redox active polypyrrole sheath is created by ultra-short pulsed current electropolymerization. Electrochemical properties of the 3-D nanoscaled TiO2 nanotube core-polypyrrole sheath electrodes relevant to the energy storage were investigated using cyclic voltammetry (CV) plots, electrochemical impedance spectroscopy (EIS), Charge discharge (CD) tests. High areal capacitance density of 48 mF cm-2 and low charge transfer resistance 12 Ω cm-2 with least ion diffusion limitation are realized at optimized polypyrrole sheath thickness. The Raman spectra studies reveal anion at specific chain locations involve in the redox process.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Minh Le Nguyen ◽  
Hoang Van Nguyen ◽  
Man Van Tran ◽  
Phung My Loan Le

In recent work, P2/P3-NaNi1/3Mn1/3Co1/3O2 (NaNMC) was obtained by the sol-gel process followed by calcination of the precursor at 900°C for 12 h. The electrochemical properties of NaNMC were investigated in the voltage range of 2.0–4.0 V. The material exhibited an initial discharge capacity of 107 mAh·g−1 and good capacity retention of 82.2% after 100 cycles. Ex situ XRD performance showed that the P3-phase transformed from the P3- to O1-phase and vice versa, while the P2-phase remained stable during the sodium intercalation. The kinetic of sodium intercalation of NaNMC upon reversible Na+ insertion/deinsertion was evaluated via a Galvanostatic Intermittence Titration Technique (GITT) and Electrochemical impedance spectroscopy (EIS). The diffusion coefficients of Na+ ion deduced from the GITT curve have a broad distribution ranging from 10−10 to 10−11 cm2·s−1 for the charging/discharging process. Besides, the evolution of diffusion coefficient and charge transfer resistance is consistent with the complex phase transition generally observed in sodium layered oxides.


2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1929
Author(s):  
Alexander Rodríguez ◽  
Francisco Burgos-Flórez ◽  
José D. Posada ◽  
Eliana Cervera ◽  
Valtencir Zucolotto ◽  
...  

Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10–1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Réka Barabás ◽  
Carmen Ioana Fort ◽  
Graziella Liana Turdean ◽  
Liliana Bizo

In the present work, ZrO2-based composites were prepared by adding different amounts of antibacterial magnesium oxide and bioactive and biocompatible hydroxyapatite (HAP) to the inert zirconia. The composites were synthesized by the conventional ceramic processing route and morpho-structurally analyzed by X-ray powder diffraction (XRPD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Two metallic dental alloys (i.e., Ni–Cr and Co–Cr) coated with a chitosan (Chit) membrane containing the prepared composites were exposed to aerated artificial saliva solutions of different pHs (i.e., 4.3, 5, 6) and the corrosion resistances were investigated by electrochemical impedance spectroscopy technique. The obtained results using the two investigated metallic dental alloys shown quasi-similar anticorrosive properties, having quasi-similar charge transfer resistance, when coated with different ZrO2-based composites. This behavior could be explained by the synergetic effect between the diffusion process through the Chit-composite layer and the roughness of the metallic electrode surface.


2020 ◽  
Vol 39 (1) ◽  
pp. 340-350
Author(s):  
Mingjing Wang ◽  
Song Zeng ◽  
Huihui Zhang ◽  
Ming Zhu ◽  
Chengxin Lei ◽  
...  

AbstractCorrosion behaviors of 316 stainless steel (316 ss) and Inconel 625 alloy in molten NaCl–KCl–ZnCl2 at 700°C and 900°C were investigated by immersion tests and electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy. X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy were used to analyze the phases and microstructures of the corrosion products. Inconel 625 alloy and 316 ss exhibited high corrosion rates in molten chlorides, and the corrosion rates of these two alloys accelerated when the temperature increased from 700°C to 900°C. The results of the electrochemical tests showed that both alloys exhibited active corrosion in chloride molten salt, and the current density of 316 ss in chloride molten salt at 700°C was 2.756 mA/cm−2, which is about three times the value for Inconel 625 alloy; and the values of the charge transfer resistance (Rt) for Inconel 625 were larger than those for 316 ss. The corrosion of these two alloys is owing to the preferred oxidation of Cr in chloride molten salt, and the corrosion layer was mainly ZnCr2O4 which was loose and porous and showed poor adherence to metal.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 135
Author(s):  
Aurelia Visa ◽  
Nicoleta Plesu ◽  
Bianca Maranescu ◽  
Gheorghe Ilia ◽  
Ana Borota ◽  
...  

The inhibition effect of N,N′-phosphonomethylglycine (PMG) and vinyl phosphonic acid (VPA) on the 3% NaCl acidic solution corrosion of carbon steel iron was studied at different immersion times by potentiodynamic polarization, electrochemical impedance spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and computational methods. It is found from the polarization studies that PMG and VPA behave as mixed-type inhibitors in NaCl. Values of charge transfer resistance (Rct) and double layer capacitance (Cdl) in the absence and presence of inhibitors are determined. The PMG and VPA inhibitors were capable of inhibiting the corrosion process up to ≈91% and ≈85%, respectively. In the presence of PMG, the synergic effect of chlorine ions was observed. Density functional theory (DFT) was engaged to establish the adsorption site of PMG, VPA, and their deprotonated states. For studied compounds, the resulted values of ELUMO, EHOMO, energy gap (∆E), dipole moment (μ), electronic hardness (η), global softness (σ), electrophilic index (ω), and the electronic potential map are in concordance with the experimental data results regarding their corrosion inhibition behavior and adsorption on the metal surface.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 788
Author(s):  
Hien T. Ngoc Le ◽  
Sungbo Cho

Aggregation of amyloid-β (aβ) peptides into toxic oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer’s disease (AD) and is the primary focus of AD diagnostics. Disaggregation or elimination of toxic aβ aggregates in patients is important for delaying the progression of neurodegenerative disorders in AD. Recently, 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) was introduced as a chemical agent that binds with toxic aβ aggregates and transforms them into monomers to reduce the negative effects of aβ aggregates in the brain. However, the mechanism of aβ disaggregation by EPPS has not yet been completely clarified. In this study, an electrochemical impedimetric immunosensor for aβ diagnostics was developed by immobilizing a specific anti-amyloid-β (aβ) antibody onto a self-assembled monolayer functionalized with a new interdigitated chain-shaped electrode (anti-aβ/SAM/ICE). To investigate the ability of EPPS in recognizing AD by extricating aβ aggregation, commercially available aβ aggregates (aβagg) were used. Electrochemical impedance spectroscopy was used to probe the changes in charge transfer resistance (Rct) of the immunosensor after the specific binding of biosensor with aβagg. The subsequent incubation of the aβagg complex with a specific concentration of EPPS at different time intervals divulged AD progression. The decline in the Rct of the immunosensor started at 10 min of EPPS incubation and continued to decrease gradually from 20 min, indicating that the accumulation of aβagg on the surface of the anti-aβ/SAM/ICE sensor has been extricated. Here, the kinetic disaggregation rate k value of aβagg was found to be 0.038. This innovative study using electrochemical measurement to investigate the mechanism of aβagg disaggregation by EPPS could provide a new perspective in monitoring the disaggregation periods of aβagg from oligomeric to monomeric form, and then support for the prediction and handling AD symptoms at different stages after treatment by a drug, EPPS.


Sign in / Sign up

Export Citation Format

Share Document