Low Volume Resistivity Chemical Vapor Deposited Boron Doped Polycrystalline Thin Diamond Film Growth on Sapphire

1996 ◽  
Vol 423 ◽  
Author(s):  
Hassan Golestanian ◽  
S. Mirzakuchaki ◽  
E. J. Charlson ◽  
T. Stacy ◽  
E. M. Charlson

AbstractHot-filament chemical vapor deposited (HFCVD) boron doped polycrystalline diamond thin films having low volume resistivity were grown on sapphire. The films were characterized using scanning electron microscope (SEM), X-ray diffraction, and current-voltage measurements. SEM micrographs show good crystalline structure with preferred (100) orientation normal to the surface of the film. X-ray diffraction pattern revealed diamond characteristics with the four typical diamond peaks present. Finally, the obtained I-V characteristics indicated that the film's volume resistivity is at least two orders of magnitude lower than those of HFCVD polycrystalline diamond thin films grown on silicon under similar growth conditions.

2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


ChemInform ◽  
2010 ◽  
Vol 28 (32) ◽  
pp. no-no
Author(s):  
M. S. HAQUE ◽  
H. A. NASEEM ◽  
A. P. MALSHE ◽  
W. D. BROWN

Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


1996 ◽  
Vol 423 ◽  
Author(s):  
S. Mirzakuchaki ◽  
H. Golestanian ◽  
E. J. Charlson ◽  
T. Stacy

AbstractAlthough many researchers have studied boron-doped diamond thin films in the past several years, there have been few reports on the effects of doping CVD-grown diamond films with phosphorous. For this work, polycrystalline diamond thin films were grown by hot filament chemical vapor deposition (HFCVD) on p-type silicon substrates. Phosphorous was introduced into the reaction chamber as an in situ dopant during the growth. The quality and orientation of the diamond thin films were monitored by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Current-voltage (I-V) data as a function of temperature for golddiamond film-silicon-aluminum structures were measured. The activation energy of the phosphorous dopants was calculated to be approximately 0.29 eV.


1993 ◽  
Vol 321 ◽  
Author(s):  
J. Y. Lin ◽  
B. H. Tseng ◽  
K. C. Hsu ◽  
H. L. Hwang

ABSTRACTProperties of μc-Si:H films grown by rf sputtering and by glow discharge-chemical vapor deposition (GD-CVD) using diluted-hydrogen and hydrogen-atom-treatment method were compared employing TEM, X-ray diffraction, Raman scattering and FT-IR. The films deposited by both methods all exhibited comparable grain sizes in the range of 10–18 nm. and showed the same tendency in almost all the Measurements.


1991 ◽  
Vol 6 (6) ◽  
pp. 1278-1286 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
D.A. Jaworske ◽  
W. Baugh

Polycrystalline diamond thin films have been deposited on single crystal silicon substrates at low temperatures (⋚ 600 °C) using a mixture of hydrogen and methane gases by high pressure microwave plasma-assisted chemical vapor deposition. Low temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 °C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.


2003 ◽  
Vol 82 (7) ◽  
pp. 1084-1086 ◽  
Author(s):  
Hae-Jeong Lee ◽  
Eric K. Lin ◽  
Barry J. Bauer ◽  
Wen-li Wu ◽  
Byung Keun Hwang ◽  
...  

1991 ◽  
Vol 138 (10) ◽  
pp. 2981-2984 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
B. H. Loo

2007 ◽  
Vol 1040 ◽  
Author(s):  
Hiroki Iwane ◽  
Naoki Wakiya ◽  
Naonori Sakamoto ◽  
Takato Nakamura ◽  
Hisao Suzuki

AbstractEpitaxial aluminum nitride (AlN) thin films were successfully prepared on the (0001) sapphire substrate by chemical vapor deposition (CVD) using aluminum iodide (AlI3) and ammonia (NH3) under atmospheric pressure at 750 ºC. The crystallographic relationship between AlN thin films and Al2O3 substrate is in the following; AlN(0001)//Al2O3(0001) and AlN[1010]//Al2O3[1120]. Lattice parameters of AlN thin film measured by X-ray diffraction revealed that c=0.498 and a=0.311 nm, respectively. Residual stress estimated by modified sin2ψ method was 0.38 GPa in compressive stress. Cross-sectional TEM observation revealed that an interlayer lies between the AlN films and the sapphire substrate. It was suggested that relaxation of residual stress caused by the mismatching of lattice parameter and thermal expansion coefficient was brought about by the interlayer.


Sign in / Sign up

Export Citation Format

Share Document