Freely Accessible Internet Resources for Nanoscience and Nanotechnology Education and Research at Portland State University's Research Servers

2006 ◽  
Vol 931 ◽  
Author(s):  
Peter Moeck ◽  
Bjoern Seipel ◽  
Girish Upreti ◽  
Morgan Harvey ◽  
William Garrick

ABSTRACTBecause a great deal of nanoscience and nanotechnology relies on crystalline nanometer sized or nanometer structured materials, crystallographers have to provide their specific contributions to the National Nanotechnology Initiative. Here we review two open access internet-based crystallographic databases, the Crystallography Open Database (COD) and the Nano-Crystallography Database (NCD), that store information in the Crystallographic Information File (CIF) format. Having more than ten thousand crystallographic data sets available on the internet in a standardized format allows for many kinds of internet-based crystallographic calculations and visualizations. Examples for this that are dealt with in this paper are interactive crystal structure visualizations in three dimensions (3D) and calculations of theoretical lattice-fringe fingerprint plots for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

2005 ◽  
Vol 909 ◽  
Author(s):  
Peter Moeck ◽  
O. Čertík ◽  
G. Upreti ◽  
W. Garrick ◽  
P. Fraundorf

AbstractCrystallographic databases for inorganic materials that are freely accessible over the internet are reviewed. The Nano-Crystallography Database project is described. Instructions are given on how to visualize in three dimensions the atomic arrangements of the several thousand entries of the Crystallography Open Database.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


2003 ◽  
Vol 775 ◽  
Author(s):  
Suk-Ho Choi ◽  
Jun Sung Bae ◽  
Kyung Jung Kim ◽  
Dae Won Moon

AbstractSi/SiO2 multilayers (MLs) have been prepared under different deposition temperatures (TS) by ion beam sputtering. The annealing at 1200°C leads to the formation of Si nanocrystals in the Si layer of MLs. The high resolution transmission electron microscopy images clearly demonstrate the existence of Si nanocrystals, which exhibit photoluminescence (PL) in the visible range when TS is ≥ 300°C. This is attributed to well-separation of nanocrystals in the higher-TS samples, which is thought to be a major cause for reducing non-radiative recombination in the interface between Si nanocrystal and surface oxide. The visible PL spectra are enhanced in its intensity and are shifted to higher energy by increasing TS. These PL behaviours are consistent with the quantum confinement effect of Si nanocrystals.


2004 ◽  
Vol 839 ◽  
Author(s):  
Peter Moeck ◽  
Wentao Qin ◽  
Philip B. Fraundorf

ABSTRACTIt is well known that the crystallographic phase and morphology of many materials changes with the crystal size in the tens of nanometer range and that many nanocrystals possess structural defects in excess of their equilibrium levels. A need to determine the ideal and real structure of individual nanoparticles, therefore, arises. High-resolution phase-contrast transmission electron microscopy (TEM) and atomic resolution Z-contrast scanning TEM (STEM) when combined with transmission electron goniometry offer the opportunity of develop dedicated methods for the crystallographic characterization of nanoparticles in three dimensions. This paper describes tilt strategies for taking data from individual nanocrystals “as found”, so as to provide information on their lattice structure and orientation, as well as on the structure and orientation of their surfaces and structural defects. Internet based java applets that facilitate the application of this technique for cubic crystals with calibrated tilt-rotation and double-tilt holders are mentioned briefly. The enhanced viability of image-based nanocrystallography in future aberration-corrected TEMs and STEMs is illustrated on a nanocrystal model system.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Liu ◽  
Hongtao Yu ◽  
Xie Quan ◽  
Shuo Chen

MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.


2007 ◽  
Vol 13 (5) ◽  
pp. 320-328 ◽  
Author(s):  
Elisa Guerrero ◽  
Pedro Galindo ◽  
Andrés Yáñez ◽  
Teresa Ben ◽  
Sergio I. Molina

In this article a method for determining errors of the strain values when applying strain mapping techniques has been devised. This methodology starts with the generation of a thickness/defocus series of simulated high-resolution transmission electron microscopy images of InAsxP1−x/InP heterostructures and the application of geometric phase. To obtain optimal defocusing conditions, a comparison of different defocus values is carried out by the calculation of the strain profile standard deviations among different specimen thicknesses. Finally, based on the analogy of real state strain to a step response, a characterization of strain mapping error near an interface is proposed.


Biophysica ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 38-47
Author(s):  
Arturo Tozzi ◽  
James F. Peters ◽  
Norbert Jausovec ◽  
Arjuna P. H. Don ◽  
Sheela Ramanna ◽  
...  

The nervous activity of the brain takes place in higher-dimensional functional spaces. It has been proposed that the brain might be equipped with phase spaces characterized by four spatial dimensions plus time, instead of the classical three plus time. This suggests that global visualization methods for exploiting four-dimensional maps of three-dimensional experimental data sets might be used in neuroscience. We asked whether it is feasible to describe the four-dimensional trajectories (plus time) of two-dimensional (plus time) electroencephalographic traces (EEG). We made use of quaternion orthographic projections to map to the surface of four-dimensional hyperspheres EEG signal patches treated with Fourier analysis. Once achieved the proper quaternion maps, we show that this multi-dimensional procedure brings undoubted benefits. The treatment of EEG traces with Fourier analysis allows the investigation the scale-free activity of the brain in terms of trajectories on hyperspheres and quaternionic networks. Repetitive spatial and temporal patterns undetectable in three dimensions (plus time) are easily enlightened in four dimensions (plus time). Further, a quaternionic approach makes it feasible to identify spatially far apart and temporally distant periodic trajectories with the same features, such as, e.g., the same oscillatory frequency or amplitude. This leads to an incisive operational assessment of global or broken symmetries, domains of attraction inside three-dimensional projections and matching descriptions between the apparently random paths hidden in the very structure of nervous fractal signals.


Sign in / Sign up

Export Citation Format

Share Document