Error Quantification in Strain Mapping Methods

2007 ◽  
Vol 13 (5) ◽  
pp. 320-328 ◽  
Author(s):  
Elisa Guerrero ◽  
Pedro Galindo ◽  
Andrés Yáñez ◽  
Teresa Ben ◽  
Sergio I. Molina

In this article a method for determining errors of the strain values when applying strain mapping techniques has been devised. This methodology starts with the generation of a thickness/defocus series of simulated high-resolution transmission electron microscopy images of InAsxP1−x/InP heterostructures and the application of geometric phase. To obtain optimal defocusing conditions, a comparison of different defocus values is carried out by the calculation of the strain profile standard deviations among different specimen thicknesses. Finally, based on the analogy of real state strain to a step response, a characterization of strain mapping error near an interface is proposed.

1992 ◽  
Vol 280 ◽  
Author(s):  
R. Dahmani ◽  
L. Salamanca-Riba ◽  
D. P. Beesabathina ◽  
N. V. Nguyen ◽  
D. Chandler-Horowitz ◽  
...  

ABSTRACTThe interface between ZnSe thin films and GaAs substrates is characterized by High Resolution Transmission Electron Microscopy and room temperature Spectroscopic Ellipsometry. The films were grown on (001) GaAs by Molecular Beam Epitaxy. A three-phase model is used in the reduction of the ellipsometric data, from which the presence of a transition layer of Ga2Se3, with a thickness of less than 1 nm, is confirmed. These results corroborate the high resolution transmission electron microscopy images obtained from the same samples.


2005 ◽  
Vol 108-109 ◽  
pp. 303-308 ◽  
Author(s):  
N. Cherkashin ◽  
Martin J. Hÿtch ◽  
Fuccio Cristiano ◽  
A. Claverie

In this work, we present a detailed structural characterization of the defects formed after 0.5 keV B+ implantation into Si to a dose of 1x1015 ions/cm2 and annealed at 650°C and 750°C during different times up to 160 s. The clusters were characterized by making use of Weak Beam and High Resolution Transmission Electron Microscopy (HRTEM) imaging. They are found to be platelets of several nanometer size with (001) habit plane. Conventional TEM procedure based on defect contrast behavior was applied to determine the directions of their Burger’s vectors. Geometric Phase Analysis of HRTEM images was used to measure the displacement field around these objects and, thus, to unambiguously determine their Burger’s vectors. Finally five types of dislocation loops lying on (001) plane are marked out: with ] 001 [1/3 ≅ b and b ∝ [1 0 1], [-1 0 1], [0 1 1], [0 -1 1].


1997 ◽  
Vol 498 ◽  
Author(s):  
E. G. Wang ◽  
Cheng-Zhang Wang ◽  
Changfeng Chen ◽  
Yan Chen

ABSTRACTHigh quality crystalline Si-C-N films on silicon substrate have been synthesized by bias-assisted hot filament chemical vapor deposition (CVD) using a gas mixture of nitrogen and methane. Scanning electron microscopy images show that the Si-C-N clusters are composed of many columnar crystals with hexagonal facets. X-ray diffraction and transmission electron microscopy analyses confirm the formation of Si-C-N crystals with lattice parameters a=7.06Å and c=2.72Å. First principles calculations are performed for β-Si3–nCnN4 (n=0,1,2,3). The calculated results support the experimental structural characterization and provide further insight into the property of the system. With increasing amount of C substitution, the bulk modulus progressively increases to 4.44 Mbar, comparable to that of diamond (4.43 Mbar), and both a and c are reduced but the ratio c/a shows little variation.


2001 ◽  
Vol 703 ◽  
Author(s):  
Shirley Turner ◽  
David S. Bright

ABSTRACTFaceting in a polyhedral rutile particle was modeled from transmission electron microscopy images. A double-tilt, rotate transmission electron microscope (TEM) sample holder was used to manipulate the particle. Using this holder, it was possible to align the c axis of the particle along one of the axes of the sample holder. This alignment allowed images to be obtained of the particle in several orientations around its c axis. Comparison of dimensions and angles obtained to those obtained for hypothetical models of the particle gives information about its likely prismatic and pyramidal faceting. This approach to facet modeling is useful for more complete determination of the faceting in individual euhedral particles using transmission electron microscopy.


Author(s):  
O. L. Shaffer ◽  
M.S. El-Aasser ◽  
C. L. Zhao ◽  
M. A. Winnik ◽  
R. R. Shivers

Transmission electron microscopy is an important approach to the characterization of the morphology of multiphase latices. Various sample preparation techniques have been applied to multiphase latices such as OsO4, RuO4 and CsOH stains to distinguish the polymer phases or domains. Radiation damage by an electron beam of latices imbedded in ice has also been used as a technique to study particle morphology. Further studies have been developed in the use of freeze-fracture and the effect of differential radiation damage at liquid nitrogen temperatures of the latex particles embedded in ice and not embedded.Two different series of two-stage latices were prepared with (1) a poly(methyl methacrylate) (PMMA) seed and poly(styrene) (PS) second stage; (2) a PS seed and PMMA second stage. Both series have varying amounts of second-stage monomer which was added to the seed latex semicontinuously. A drop of diluted latex was placed on a 200-mesh Formvar-carbon coated copper grid.


Author(s):  
L.E. Murr ◽  
A.B. Draper

The industrial characterization of the machinability of metals and alloys has always been a very arbitrarily defined property, subject to the selection of various reference or test materials; and the adoption of rather naive and misleading interpretations and standards. However, it seems reasonable to assume that with the present state of knowledge of materials properties, and the current theories of solid state physics, more basic guidelines for machinability characterization might be established on the basis of the residual machined microstructures. This approach was originally pursued by Draper; and our presentation here will simply reflect an exposition and extension of this research.The technique consists initially in the production of machined chips of a desired test material on a horizontal milling machine with the workpiece (specimen) mounted on a rotary table vice. A single cut of a specified depth is taken from the workpiece (0.25 in. wide) each at a new tool location.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document