Active Polymer Nanoparticles: Delivery of Antibiotics

2007 ◽  
Vol 1019 ◽  
Author(s):  
Monica Rabinovich ◽  
Shankari N. Somayaji ◽  
Rajeev Raghavan Pillai ◽  
Michael C. Hudson ◽  
J. Kent Ellington ◽  
...  

AbstractAntibiotic-encapsulated PLA and PLGA nanoparticles were prepared by the single emulsion-solvent evaporation technique. Different PLA and PLGA systems were prepared, varying the copolymer composition and the amount of the surfactant polyvinyl alcohol. Characterization and drug loading studies were performed by UV-Visible spectrophotometry, dynamic light scattering, and scanning electron microscopy (SEM).Simultaneously, in order to model the diffusion of the nanoparticles within the osteoblast, QDs such as functionalized InGaP/ZnS and polymer encapsulated InGaP/ZnS nanoparticles were added to confluent cultures of primary mouse osteoblasts. Following PreFer fixation, cultures were examined via confocal microscopy. QDs were clearly visible within osteoblasts.

2013 ◽  
Vol 858 ◽  
pp. 60-66 ◽  
Author(s):  
A.A. Hawari ◽  
C.Y. Tham ◽  
Zuratul Ain Abdul Hamid

In this work, PLLA microspheres were prepared via emulsion solvent evaporation technique. Several synthesis parameters were studied to evaluate their effect on the size of PLLA microspheres. PLLA pallets before emulsion and PLLA microspheres surface chemistry after emulsion were determined using Fourier Transform Infra-red (FTIR). Results showed that PLLA pallets and microspheres FTIR obtained an identical spectrum. Microspheres size and surface morphology were determined using Scanning Electron Microscopy (SEM). In conclusion, the parameters that significantly affect the size of PLLA microspheres were PLLA concentration, DCM to water volume ratio, PVA concentration and stirring speed. PVA molecular weight variation showed no significant change in microspheres size.


2019 ◽  
Vol 824 ◽  
pp. 163-167
Author(s):  
Pema Dechen ◽  
Ekasith Somsook

In this report, synthesis and characterization of gold nanoparticles (AuNPs) from gold leaf by electrolysis in two different media (gel and paper) in presence of sodium chloride (NaCl), glucose (C6H12O6) and polyvinyl pyrrolidone (PVP) at room temperature were investigated. Graphite was used as two electrodes, NaCl was used as an electrolyte, C6H12O6 was used as reducing agent and PVP was used as stabilizer to control the aggregation of the nanoparticles. UV-Visible spectroscopy (UV-Vis) and scanning electron microscopy (SEM) were used to confirm the characteristics and morphologies of the synthesized AuNPs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ranganaik Viswanath ◽  
Halehatty Seethya Bhojya Naik ◽  
Yashavanth Kumar Gubbihally Somalanaik ◽  
Prashanth Kumar Parlesed Neelanjeneallu ◽  
Khandugadahalli Nagarajappa Harish ◽  
...  

Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrometry (FTIR), thermogravimetric-differential scanning calorimetry (TG-DSC), and UV-visible and photoluminescence (PL) spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4363
Author(s):  
Narmin Suvarli ◽  
Iris Perner-Nochta ◽  
Jürgen Hubbuch ◽  
Michael Wörner

Spherical, individual polymer nanoparticles with functional –SH groups were synthesized via aerosol photopolymerization (APP) employing radically initiated thiol-ene chemistry. A series of various thiol and alkene monomer combinations were investigated based on di-, tri-, and tetrafunctional thiols with difunctional allyl and vinyl ethers, and di- and trifunctional acrylates. Only thiol and alkene monomer combinations able to build cross-linked poly(thio-ether) networks were compatible with APP, which requires fast polymerization of the generated droplet aerosol during the photoreactor passage within a residence time of half-minute. Higher monomer functionalities and equal overall stoichiometry of functional groups resulted in the best nanoparticles being spherical and individual, proven by scanning electron microscopy (SEM). The presence of reactive—SH groups in the synthesized nanoparticles as a basis for post-polymerization modifications was verified by Ellman’s test.


2021 ◽  
Vol 16 ◽  
pp. 155892502110438
Author(s):  
Parshuram Singh ◽  
Sapna Balayan ◽  
Rajendra Kumar Sarin ◽  
Utkarsh Jain

Fibers are the unit component for product development. They can be divided into two types: synthetic and natural fibers. Recently, emerging nanotechnology has played a vital role in advancing next-generation fabrics. The nanomaterials provide several unique properties such as higher conductivity, self-cleaning, water-resistant, and others. Owing to their advanced properties, the fabrics are being developed by coating and integrating with nanomaterials. Therefore, in the presented work two cotton samples were modified with titanium dioxide (TiO2) and zinc oxide (ZnO). These samples were further examined under various techniques including scanning electron microscopy (SEM), UV-visible spectroscopy, X-ray fluorescence (XRF), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, these samples were evaluated at varying wavelengths with UV light and the obtained results demonstrated that the nano-coated fiber samples can be differentiated at 365 nm.


2021 ◽  
Vol 43 (1) ◽  
pp. 14-14
Author(s):  
Fazal Akbar Jan Fazal Akbar Jan ◽  
Muhammad Aamir Muhammad Aamir ◽  
Naimat Ullah and Husaain Gulab Naimat Ullah and Husaain Gulab

The synthesized oxide (SnO2) nanoparticles by sol-gel method were characterized using UV-Visible spectroscopy (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), X-rays diffraction(XRD) and Scanning electron microscopy(SEM). Using X-rays diffraction analysis different parameter were calculated such as crystallite size, d-spacing, dislocation density, number of unit cell, cell volume, morphological index, micro strain and instrumental broadening. The average particle size was 28.396 nm. Scanning electron microscopy revealed that SnO2 nanopartcles are uniformly distributed. Optical properties such as band gap (energy gap = 3.6 eV) was calculated from UV-Visible spectroscopy. The characterized particles were used as photocatalyst for the degradation of Eosin dye in aqueous solution under UV light. The effect of different parameters i.e irradiation time, initial dye concentration, pH of the medium and catalyst weight on percent degradation was also studied. Mmaximum dye degradation was found at 220 minutes time interval that was 92 % using 10 ppm solution. At pH 5 the degradation of dye was found to be 94%. The catalyst dose of 0.06 g was found to be the optimum weight for the best photo catalytic degradation of Eosin Y.


2009 ◽  
Vol 1154 ◽  
Author(s):  
Claire Barrett ◽  
Gaëtan Lévêque ◽  
Hugh Doyle ◽  
Donocadh P Lydon ◽  
Gareth Redmond ◽  
...  

AbstractThe formation of nanocrystal-molecule-nanocrystal nanostructures via controlled mixing of Au nanocrystals and bifunctional Re linkers is reported. UV-visible absorbance data, coupled with histogram analysis of nanostructures measured using Scanning Electron Microscopy has shown a characteristic optical response at wavelengths close to 600 nm following formation of dimer and trimer nanostructures. Directed assembly processes based on dielectrophoretic trapping have also been developed for electrical interfacing of these nanostructures between top-down nanoelectrode pairs for electrical characterization.


Clay Minerals ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 739-748 ◽  
Author(s):  
Yufeng Chen ◽  
Gensheng Yu

AbstractComposites based on ZnS nanparticles embedded in layered magadiite were synthesized via a three step process : protonation of Na-magadiite, ion exchange in order to introduce Zn(NH3)42+ in the interlayer space, and addition of Na2S to form ZnS particles in the interlayer space of magadiite. The composites obtained were characterized by X-ray power diffraction (XRD), Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM-EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, Photoluminscence spectra (PL), and UV-visible transmission spectra (UV-vis). Results indicated that ZnS nanoparticles embedded in magadiite presented different optical properties and photoluminescence enhancement properties compared with those of uncovered ZnS particles (without host magadiite).


2020 ◽  
Vol 10 (1) ◽  
pp. 63-75
Author(s):  
Antonio O. Costa ◽  
Claure N. Lunardi ◽  
Anderson J. Gomes

Purpose: This study assesses the kinetics of the anti-tumor drug chlorambucil (CLB) incorporated into PLGA nanoparticles (NP-CLB) with and without the presence of the O-stearoyl mannose (OEM) functionalizing agent (NP-CLBMAN). Methods: OEM was synthesized and used in the NP-CLB-MAN formulation. The nanoparticles were characterized by dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Results: The nanoparticles presented an encapsulation efficiency greater than 61% and a PdI between 0.186–0.217. The mean size was 185 nm for NP-CLB and 220 nm for NPCLB- MAN, and the zeta potential values were -17.7 mV for NP-CLB and -14.2 mV for NP- CLB-MAN. Scanning electron microscopy showed that NPs with OEM have a surface with a different shape, and FTIR analyses showed binding of CLB to the drug delivery system, as well as functionalization with OEM. In vitro release studies showed a biphasic release profile for both systems, and they were analyzed considering the mathematical Korsmeyer-Peppas, first-order, and Fick diffusion models, and the combination of the first-order and Fick diffusion models. Conclusion: The experimental results obtained for the release of CLB were better described using a combination of the first order and Fick diffusion mathematical models.


Sign in / Sign up

Export Citation Format

Share Document