Irradiation Effects of Methanol Cluster Ion Beams on Solid Surfaces

2007 ◽  
Vol 1020 ◽  
Author(s):  
Gikan Takaoka ◽  
Masakazu Kawashita ◽  
Takeshi Okada

AbstractIn order to investigate the interactions of methanol cluster ion beams with solid surfaces, Si substrates and SiO2 films were irradiated at different acceleration voltages. The sputtered depth increased with increase of the acceleration voltage. When the acceleration voltage was 9 kV, the sputtered depths of Si and SiO2 at a dose of 1×1016ions/cm2 were 1497.1 nm and 147.8 nm, respectively. The selectivity between Si and SiO2 surfaces arose from the volatility of the reaction products. Furthermore, the sputtering yield for the Si surface was approximately seven hundreds times larger than that by Ar monomer ion beams. This suggested that chemical sputtering was predominant for the methanol cluster ion irradiation. In addition, the etching and cleaning process by the methanol cluster ion irradiation was performed on the Si surfaces contaminated with a small amount of metal particles such as Au and Al. Thus, methanol cluster ion beams have unique characteristics such as surface etching and cleaning with high sputtering yield and smooth surface.

2009 ◽  
Vol 1181 ◽  
Author(s):  
Kazuya Ichiki ◽  
Satoshi Ninomiya ◽  
Toshio Seki ◽  
Takaaki Aoki ◽  
Jiro Matsuo

AbstractAr cluster ions in the size range 1000�16000 atoms/cluster were irradiated onto Si substrates at incident energies of 10 and 20 keV and the sputtering yields were measured. Incident cluster ions were size-selected by using the time-of-flight (TOF) method. The sputtering yield was calculated from the sputtered Si volume and irradiation dose. It was found that the sputtering yields decreased with increasing incident cluster size under the same incident energy conditions. The integrated sputtering yields calculated from the sputtering yields measured for each size of Ar cluster ions, as well as the cluster size distributions, were in good agreement with experimental results obtained with nonselected Ar cluster ion beams.


2003 ◽  
Vol 792 ◽  
Author(s):  
Toshio Seki ◽  
Jiro Matsuo

ABSTRACTCluster ion beam processes can produce high rate sputtering with low damage in comparison with monomer ion beam processes. Especially, it is expected that extreme high rate sputtering can be obtained using reactive cluster ion beams. High current SF6 cluster ion beams were recently obtained with new modifications in the basic cluster ion beam technique. The cluster size distribution was measured with Time-of-Flight (TOF) method and the mean size of cluster was about 500 molecules. Si substrates were irradiated with SF6 cluster ions at the acceleration energy of 5–45 keV. Sputtering yield with SF6 cluster ions was increased with acceleration energy and was about 2300 atoms/ion at 45 keV. The sputtering yield was about 1000 times higher than that of Ar monomer ions and was also higher than that of Ar cluster ions. It was found that reactive sputtering occurred with SF6 cluster ion irradiation. These results indicate that high-speed fabrication can be realized with reactive cluster ion irradiation at high energy.


1996 ◽  
Vol 03 (01) ◽  
pp. 1017-1021 ◽  
Author(s):  
J. MATSUO ◽  
M. AKIZUKI ◽  
J. NORTHBY ◽  
G.H. TAKAOKA ◽  
I. YAMADA

A high-current (~100 nA) cluster-ion-beam equipment with a new mass filter has been developed to study the energetic cluster-bombardment effects on solid surfaces. A dramatic reduction of Cu concentration on silicon surfaces has been achieved by 20-keV Ar cluster (N~3000) ion bombardment. The removal rate of Cu with cluster ions is two orders of magnitude higher than that with monomer ions. A significantly higher sputtering yield is expected for cluster-ion irradiation. An energetic cluster-ion beam is quite suitable for removal of metal.


2008 ◽  
Vol 79 (2) ◽  
pp. 02C503 ◽  
Author(s):  
Gikan H. Takaoka ◽  
Masakazu Kawashita ◽  
Takeshi Okada

1996 ◽  
Vol 03 (01) ◽  
pp. 891-895 ◽  
Author(s):  
M. AKIZUKI ◽  
M. HARADA ◽  
Y. MIYAI ◽  
A. DOI ◽  
T. YAMAGUCHI ◽  
...  

Low-damage irradiation effects of gas cluster-ion beams have been studied at acceleration voltages below 20 kV. The surfaces of targets have been smoothened significantly by CO 2-cluster-ion irradiation at normal incidence. Si substrate surfaces have been cleaned and exhibited low damage after CO 2- and Ar-cluster-ion irradiation at low doses. In the case of CO 2-cluster-ion irradiation, SiO 2 film of about 5.5-nm thickness have grown on Si substrate at room temperature. A damaged layer of less than 2.5-nm thickness has been formed underneath the SiO 2 film.


2011 ◽  
Author(s):  
K. Ichiki ◽  
S. Ninomiya ◽  
T. Seki ◽  
T. Aoki ◽  
J. Matsuo ◽  
...  

2004 ◽  
Vol 843 ◽  
Author(s):  
Toshio Seki ◽  
Jiro Matsuo

ABSTRACTCluster ion beam processes can produce high rate sputtering with low damage in comparison with monomer ion beam processes. Especially, it is expected that extreme high rate sputtering can be obtained using reactive cluster ion beams. Reactive cluster ion beams, such as SF6, CF4, CHF3, and CH2F2, were generated and their cluster size distributions were measured using Time-of-Flight (TOF) method. Si substrates were irradiated with the reactive cluster ions at the acceleration energy of 5–65 keV. Each sputtering yield was increased with acceleration energy and was about 1000 times higher than that of Ar monomer ions. The sputtering yield of SF6 cluster ions was about 4600 atoms/ion at 65 keV. With this beam, 12 inches wafers can be etched 0.5 μm per minute at 1 mA of beam current. The TOF measurement showed that the size of SF6 cluster was about 550 molecules and the number of fluorine atoms in a SF6 cluster was about 3300. If the sputtered product was SiF, the yield has to be less than 3300 atoms/ion. These results indicate that the reactive cluster ions etch targets not only chemically, but also physically. This high-speed processing with reactive cluster ion beam can be applied to fabricate nano-devices.


2007 ◽  
Vol 330-332 ◽  
pp. 111-114 ◽  
Author(s):  
Kawashita Masakazu ◽  
Satomi Itoh ◽  
Kazunori Miyamoto ◽  
Rei Araki ◽  
Gikan H. Takaoka

Polyethylene (PE) substrates were irradiated at a dose of 1×1015 ions·cm−2 by the simultaneous use of oxygen (O2) cluster and monomer ion beams. The acceleration voltage for the ion beams was 7 kV. Unirradiated and irradiated PE substrates were soaked in simulated body fluid with ion concentrations 1.5 times of those of human blood plasma (1.5SBF) for 7 days. The irradiated PE substrate formed apatite on its surface, whereas unirradiated one did not form it. This is attributed to the formation of functional groups effective for apatite nucleation, such as COOH groups, on the substrate surface by the simultaneous use of O2 cluster and monomer ion beams. In addition, the apatite-forming ability of the irradiated substrate was improved by the subsequent CaCl2 treatment. This suggests that Ca2+ ions present on the substrate surface accelerated the apatite deposition. We can conclude that apatite-forming ability can be induced on surface of polyethylene by the simultaneous use of O2 cluster and monomer ion beams.


Sign in / Sign up

Export Citation Format

Share Document