In-situ AFM study of the crystallization and pH-dependent stability of ZnO(0001)-Zn surfaces

2007 ◽  
Vol 1035 ◽  
Author(s):  
Markus Valtiner ◽  
Guido Grundmeier

AbstractPolar ZnO(0001)-Zn surfaces can be prepared as very well defined and single crystalline surfaces by hydroxide stabilization simply by introducing hydroxides via a wet chemical cleaning step. Within this proceeding we present an in-situ AFM imaging of the crystallization process. The pH dependent stability of the resulting hydroxide-stabilized surfaces was further investigated by means of an ex-situ LEED approach. These investigations show, that it is possible to obtain high quality single crystalline ZnO(0001)-Zn surfaces in a simple way. Moreover, these surfaces turned out to be very stable within a wide range of pH values between 11 and 3 of NaClO4 based 1mM electrolyte solutions.

2008 ◽  
Vol 573-574 ◽  
pp. 77-117 ◽  
Author(s):  
Oliver Senftleben ◽  
Hermann Baumgärtner ◽  
Ignaz Eisele

An overview of various cleaning procedures for silicon surfaces is presented. Because in-situ cleaning becomes more and more important for nanotechnology the paper concentrates on physical and dry chemical techniques. As standard ex-situ wet chemical cleaning has a significant impact on surface quality und thus device properties, its influence on further processes is also considered. Oxygen and carbon are unavoidable contaminations after wet chemical treatment and therefore we discuss their in-situ removal as one of the main goals of modern silicon substrate cleaning. As surface roughness strongly influences the electrical quality of interfaces for epitaxy and dielectric growth, we concentrate on techniques, which meet this requirement. It will be shown that multi-step thermal sequences in combination with simultaneous passivation of the clean surface are necessary in order to avoid recontamination. This can be achieved not only for ultra hich vacuum but also for inert gas atmosphere. In this case the process gases have to be extremely purified and the residual partial pressure of contaminats such as oxygen and carbon has to be negligible. It will be demonstrated that 800°C is an upper limit for thermal treatment of silicon surfaces in the presence of carbon because at this temperature SiC formation in combination with a high mobility of silicon monomers leads to surface roughness. In addition mechanical stress causes dislocations and crystal defects.


1994 ◽  
Vol 337 ◽  
Author(s):  
S. J. Pearton ◽  
C. R. Abernathy ◽  
F. Ren ◽  
J. R. Lothian ◽  
R. F. Kopf ◽  
...  

ABSTRACTDry etching of common masking materials used in GaAs device technology was examined down to temperatures of −30°C. The etch rates of SiNx, SiO2 and W in SF6/Ar are reduced below 0°C, but the anisotropy of the etching is improved at low temperature. Microwave enhancement of the SF6/Ar discharges produces increases in etch rates of several times at 25°C, but much lower increases at −30°C substrate temperature. The underlying GaAs surface shows increased S and F coverage after low temperature etching, but these species are readily removed either by an ex-situ wet chemical cleaning step or an in-situ H2 plasma exposure. Photoresist etching is less sensitive to temperature and anisotropic profiles are produced between −30 and + 60°C in pure 02 discharges.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 545 ◽  
Author(s):  
Rathmalgodage Thejani Nilusha ◽  
Tuo Wang ◽  
Hongyan Wang ◽  
Dawei Yu ◽  
Junya Zhang ◽  
...  

The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.


1999 ◽  
Vol 590 ◽  
Author(s):  
DM Pickup ◽  
G Mountjoy ◽  
RJ Newport ◽  
ME Smith ◽  
GW Wallidge ◽  
...  

ABSTRACTSol-gel produced mixed oxide materials have been extensively studied using conventional, ex situ structural techniques. Because the structure of these materials is complex and dependent on preparation conditions, there is much to be gained from in situ techniques: the high brightness of synchrotron x-ray sources makes it possible to probe atomic structure on a short timescale, and hence in situ. Here we report recent results for mixed titania- (and some zirconia-) silica gels and xerogels. Titania contents were in the range 8–18 mol%, and heat treatments up to 500°C were applied. The results have been obtained from intrinsically rapid synchrotron x-ray experiments: i) time-resolved small angle scattering, using a quadrant detector, to follow the initial stages of aggregation between the sol and the gel; ii) the use of a curved image plate detector in diffraction, which allowed the simultaneous collection of data across a wide range of scattering at high count rate, to study heat treatments; and iii) x-ray absorption spectroscopy to explore the effects of ambient moisture on transition metal sites.


2007 ◽  
Vol 1017 ◽  
Author(s):  
Bridget Ingham ◽  
Benoit N. Illy ◽  
Jade R. Mackay ◽  
Stephen P. White ◽  
Shaun C. Hendy ◽  
...  

AbstractZnO is known to produce a wide variety of nanostructures that have enormous scope for optoelectronic applications. Using an aqueous electrochemical deposition technique, we are able to tightly control a wide range of deposition parameters (Zn2+ concentration, temperature, potential, time) and hence the resulting deposit morphology. By simultaneously conducting synchrotron x-ray absorption spectroscopy (XAS) experiments during the deposition, we are able to directly monitor the growth rates of the nanostructures, as well as providing direct chemical speciation of the films. In situ experiments such as these are critical to understanding the nucleation and growth of such nanostructures.Recent results from in situ XAS synchrotron experiments demonstrate the growth rates as a function of potential and Zn2+ concentration. These are compared with the electrochemical current density recorded during the deposition, and the final morphology revealed through ex situ high resolution electron microscopy. The results are indicative of two distinct growth regimes, and simultaneous changes in the morphology are observed.These experiments are complemented by modelling the growth of the rods in the transport-limited case, using the Nernst-Planck equations in 2 dimensions, to yield the growth rate of the volume, length, and radius as a function of time.


1999 ◽  
Vol 64 (12) ◽  
pp. 2044-2060 ◽  
Author(s):  
Karel Bouzek ◽  
Martin Nejezchleba

In situ Mössbauer spectra of the iron electrode at anodic potential were measured in sodium hydroxide solution over a wide range of concentrations (0.1 - 14 mol l-1). It was found that the in situ Mössbauer spectra exhibit generally one sextet and one doublet corresponding to the oxide layer on the anode surface. Parameters of these spectra show only minor variations within the electrolyte concentration range of 0.1 - 7 M NaOH. A pronounced change in the spectra was observed in 14 M NaOH. The major processes taking place in the anode surface layer are based on the break-down of protective properties of the passive layer, incipient intense metal dissolution and subsequent oxidation. Important differences were also found between in situ and ex situ spectra measurements.


Author(s):  
F.K. LeGoues

In recent papers, we have described a novel mechanism for strain relaxation of thin films. Because of its strong resemblance to the well known Frank-Read sources of dislocations, it was called the “Modified-Frank-Read” (MFR) mechanism. This process was first observed during the growth of compositionally graded SiGe/Si(001) thin films, where it results in dislocations pile-ups being injected deep into an initially perfect substrate, leaving the topmost part of the film relaxed and nominally defect free. This last observation opens the door to a wide range of electronic applications since it makes it possible to grow electronic grade buffer layers of arbitrary composition and lattice parameter.The exact mechanism of the reproduction of dislocations was identified through tilting experiment and analysis of several compositionally graded SiGe/Si(001) structures. These also provided the important parameters controlling this mode of strain relaxation. We thus demonstrated that the MFR mechanism corresponds to the multiplication of “corner dislocations” (dislocations whose line forms a 90° angle) by simultaneous glide on two (111) planes.


Author(s):  
A. V. Zagrebelny ◽  
E. T. Lilleodden ◽  
J. C. Nelson ◽  
S. Ramamurthy ◽  
C. B. Carter

Contact which only involves a small volume of material is becoming increasingly important to many industries including micromachines, microelectronics, and magnetic recording. The ability to characterize surface roughening on the micro- and nanoscopic scale is invaluable in understanding microplasticity due to indentation, scratches, wear, fatigue and epitactic mismatch. It has been demonstrated that AFM studies are appropriate for developing a mechanistic approach to μN load indentation analysis since they allow deformation volumes and residual depths to be measured and characterized directly and unambiguously.In the present study, interfaces between silicate glass and single-crystal α-Al2O3 have been studied using AFM and nanoindentation. The interfaces between the glass and the crystalline grains were prepared by growing films of anorthite (CaAl2Si2O8) composition with thickness ranging 100-200 nm on single-crystal sapphire substrates of {1120} (A-plane) and {1102} (R-plane) crystallographic orientations by pulsed-laser deposition (PLD). Some specimens were subjected to heat treatments in a conventional box furnace causing films to dewet the substrates. Fig. 1 shows schematically the morphology of the dewetted film which has resulted in the formation of distinctive islands, 0.5-2 μm in size. Both types of specimens were tested with two different micro/nanomechanical testers.


1992 ◽  
Vol 282 ◽  
Author(s):  
S. J. Pearton ◽  
F. Ren ◽  
A. Katz ◽  
U. K. Chakrabarti ◽  
E. Lane ◽  
...  

ABSTRACTFabrication of sub-micron high electron mobility transistors (HEMTs) involves dry etch removal of GaAs from an underlying AlGaAs or InGaAs stop layer. The etch selectivity is achieved by formation of AlF3 on AlGaAs, or InCl3 and InF3 on InGaAs, which must be removed before processing can proceed. Wet chemical cleaning has difficulty in such a situation because of surface tension effects. We have investigated use of Electron Cyclotron Resonance (ECR) H2 or Ar discharges, or hexafluoroacetylacetone (HFAC) vapor, for in-situ dry etch cleaning of HEMTs exposed to low bias BCl3/SF6 discharges. The HFAC vapor can remove most of the remnant fluorine, but is effective only when the sample is heated above ∼250°C. This relatively high temperature is not compatible with in-situ cleaning of the etched device. Low-bias(−75V) sputter cleaning with an Ar discharge removes all remnant Cl and ∼40% of the F, but dc biases above -125V are required for complete cleaning, and this ion bombardment can lead to damage in the HEMT. ECR H2 discharge exposure is effective in removing all Cl- and F-related residues in a short period (∼5 mins) with low dc biases (−25 V) on the sample.


Sign in / Sign up

Export Citation Format

Share Document