Thermal Oxidation of Amorphous Silicon-Boron Alloy

1987 ◽  
Vol 105 ◽  
Author(s):  
W. M. Lau ◽  
R. Yang ◽  
B. Y. Tong ◽  
S. K. Wong

AbstractThe thermal oxidation of amorphous silicon-boron alloy (prepared by low pressure chemical vapor deposition) with boron contents ranged from 0–40% at a temperature range of 25- 700 °C has been carried out. Crystalline silicon and polycrystalline boron have also been studied for comparison purposes. The resultant thin oxide overlayers were characterized by X-ray photoelectron spectroscopy. It was found that both the oxidation of Si and of B are enhanced by mixing of the two elements. The oxidation of boron is significantly slower than silicon. During oxidation of silicon-boron alloy, preferential oxidation of silicon occurs at the oxide/bulk interface and the silicon oxide overlayer advances into the bulk faster than the boron oxide.

1990 ◽  
Vol 204 ◽  
Author(s):  
Wayne L. Gladfelter ◽  
Jen-Wei Hwang ◽  
Everett C. Phillips ◽  
John F. Evans ◽  
Scott A. Hanson ◽  
...  

ABSTRACTCyclo-trigallazane, [H2GaNH2]3, is known to form bulk powders of the new cubic phase of gallium nitride upon pyrolysis. An explanation for this unusual example where the molecular structure of the precursor controls the crystal structure of the solid state product is presented. In a hot-wall atmospheric pressure chemical vapor deposition (CVD) reactor, arsine was found to react with TMAG to form films of polycrystalline GaAs which were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The growth rates for smooth films was 1-4 μm/h. In a low pressure CVD reactor, elemental arsenic vapor was also found to react with the TMAG to give GaAs thin films.


1990 ◽  
Vol 192 ◽  
Author(s):  
Aain E. Kaloyeros ◽  
James W. Corbett ◽  
Paul J. Tobcano ◽  
Richard B. Rizk

ABSTRACTPreliminary results are presented for a new approach proposed by the present investigators to solve the problem of light-induced degradation in amorphous silicon semiconductors. The approach uses low-temperature metal-organic chemical vapor deposition (LTMOCVD) of tailored organometallic precursors. The precursors employed are non-toxic, non-hazardous and easy to handle. In the present paper, a-Si:H films were grown, using argon with various hydrogen concentrations as carrier gas, in a cold-wall CVD reactor at a reactor pressure of 1-10 torr and substrate temperature in the range 300–450°C. Characterization studies were performed using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and extended electron-energy-loss fine structure spectroscopy (EXELFS). The results of these studies showed that the films were uniform, continuous, adherent and highly pure--contaminant levels were below the detection limits of XPS. In addition, EXELFS results showed that short-range order (SRO), consisting of the same tetrahedral coordinated units found in crystalline silicon, does exist in all the amorphous samples, regardless of hydrogen concentration. However, the degree of stuctural disorder in the silicon local tetrahedral units decreased as hydrogen was added.


1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


APL Materials ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 046105 ◽  
Author(s):  
Xiaoyu Ji ◽  
Hiu Yan Cheng ◽  
Alex J. Grede ◽  
Alex Molina ◽  
Disha Talreja ◽  
...  

2016 ◽  
Vol 5 (2) ◽  
pp. 56
Author(s):  
Keiji Komatsu ◽  
Pineda Marulanda David Alonso ◽  
Nozomi Kobayashi ◽  
Ikumi Toda ◽  
Shigeo Ohshio ◽  
...  

<p class="1Body">MgO films were epitaxially grown on single crystal MgO substrates by atmospheric-pressure chemical vapor deposition (CVD). Reciprocal lattice mappings and X-ray reflection pole figures were used to evaluate the crystal quality of the synthesized films and their epitaxial relation to their respective substrates. The X-ray diffraction profiles indicated that the substrates were oriented out-of-plane during MgO crystal growth. Subsequent pole figure measurements showed how all the MgO films retained the substrate in-plane orientations by expressing the same pole arrangements. The reciprocal lattice mappings indicated that the whisker film showed a relatively strong streak while the continuous film showed a weak one. Hence, highly crystalline epitaxial MgO thin films were synthesized on single crystal MgO substrates by atmospheric-pressure CVD.</p>


Sign in / Sign up

Export Citation Format

Share Document