Rapid Thermal Annealed Undoped LPCVD Si/Single Crystal Si Substrate Structures with an Implant of Si Near Interfaces

1987 ◽  
Vol 106 ◽  
Author(s):  
S. Ogawa ◽  
S. Okuda ◽  
T. Kouzaki ◽  
T. Yoshida ◽  
Y. Yoshioka

ABSTRACTThe breaking up of a native oxide layer of a LPCVD amorphous Si/single crystal n+Si substrate interface by a rapid-thermal annealing was studied from the point of view of oxygen movement and morphological change. Oxygen atoms began to move at 1025 °C. After annealing at 1115 °C for 30sec, the quantity of oxygen atoms near the interface decreased dramatically and a silicon implant near the interface could enhance the decrease. More detailed observation was carried out by cross-section high-resolution transmission electron microscopy. After annealing at 940 °C for 30sec, the native oxide layer was continuous. On the qther hand, with a silicon implant near the interface, it changed into small oxide balls and an epitaxial growth occurred in the LPCVD layer with twins caused by these oxide balls. After annealing at 1115°C for 30sec, even without the silicon implant, a complete epitaxial growth occurred but it seemed that some SiOx particles dissolved into a single crystal Si layer near the interface.

2013 ◽  
Vol 740-742 ◽  
pp. 485-489 ◽  
Author(s):  
Wei Huang ◽  
Shao Hui Chang ◽  
Xue Chao Liu ◽  
Zheng Zheng Li ◽  
Tian Yu Zhou ◽  
...  

The near-SiC-interfaces of annealed Ni/SiC contacts were observed directly by high-resolution transmission electron microscopy (HRTEM). 1 nm native oxide layer was observed in the as-deposited contact interface. The native oxide layer cannot be removed at 650°C through rapid thermal annealing (RTA) and it was completely removed at 1000°C RTA. The residue of native oxide layer resulted in the Schottky characters. High temperature annealing (>950°C) not only removes the oxide layer in the near-SiC-interface, but also forms a well arranged flat Ni2Si/SiC interface, which contribute to the formation of ohmic behavior.


1989 ◽  
Vol 157 ◽  
Author(s):  
S. P. Withrow ◽  
O. W. Holland ◽  
S. J. Pennycook ◽  
J. Pankove ◽  
A. Mascarenhas

ABSTRACTIon beam annealing of amorphous Si(100) layers formed by co-implantation of overlapping Ga and As distributions is studied. Annealing was done using 750 keV Si+ ions with the Si substrate held at 300°C. The samples were characterized using 2.0 and 5.0 MeV He+ backscattering/channeling as well as by transmission electron microscopy (TEM). Crystallization of the amorphous Si layer occurs during irradiation via solid-phase-epitaxial growth without impurity precipitation or segregation. Both the Ga and As are mainly substitutional in the Si lattice, even at concentrations in excess of 7 at. % for each species. These results are attributed to compensation effects, most likely through ion pairing of the dopants.


2014 ◽  
Vol 778-780 ◽  
pp. 566-570 ◽  
Author(s):  
Wei Huang ◽  
Xi Liu ◽  
Xue Chao Liu ◽  
Tian Yu Zhou ◽  
Shi Yi Zhuo ◽  
...  

Native oxide layer with thickness of about 1 nm was found easy to form on 6H-SiC surface during transporting from cleaning process to vacuum chambers, which was examined by x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The interface band bending was studied by synchrotron radiation photoelectron spectroscopy (SRPES). For the native-oxide/SiC surface, after Ni deposition, the binding energy of Si 2p red-shifted about 0.34 eV, which suggested the upward bending of the interface energy band. Therefore, the native oxide layer should be considered on the study of SiC devices because it may affect the electron transport properties significantly.


Author(s):  
M.J. Kim ◽  
R.W. Carpenter

It is known that a thin layer of so-called “native oxide” is formed immediately on clean silicon surfaces upon exposure to air at room temperature. The composition of native oxide, SiOx, is uncertain. Various experimental methods have yielded values less than 2 for x. Parallel energy loss spectrometers fitted to analytical electron microscopes with field emission sources provide sufficient spatial resolution (≤4nm) for direct quantitative analysis of native oxide films. In this note we report the first EELS analysis of native oxide on silicon.CZ Si {001} wafers, HF etched at room temperature and rinsed in doubly deionized water, were exposed to air until placed in an UHV chamber. A thin layer of Au wasthen deposited on Si surfaces, so that the native oxide layer was preserved between Si substrate and deposited Au film. Cross section TEM specimens were made in the usual way.


2007 ◽  
Vol 22 (8) ◽  
pp. 2273-2278 ◽  
Author(s):  
J.M. Molina ◽  
J. Tian ◽  
C. Garcia-Cordovilla ◽  
E. Louis ◽  
J. Narciso

The infiltration behavior of compacts of SiC particles in two surface conditions, as-received and thermally oxidized, was investigated by using pure Al and Al-12wt%Si as infiltrating metals. Analysis of the threshold pressure for infiltration revealed that the process is governed by the same contact angle for all different systems, no matter the metal or particle condition. This leads to the conclusion that oxidation does not modify the wetting characteristics of the particles, most probably because they are already covered by a thin native oxide layer that remains unaltered in processing routes involving short contact times and low temperatures, such as actual conditions of pressure infiltration at 700 °C.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Augustus K. W. Chee ◽  
Conny Rodenburg ◽  
Colin John Humphreys

AbstractDetailed computer modelling using finite-element analysis was performed for Si p-n junctions to investigate the effects of surface states and doping concentrations on surface band-bending, surface junction potentials and external patch fields. The density of surface states was determined for our Si specimens with a native oxide layer. Our calculations show that for a typical density of surface states for a Si specimen with a native oxide layer, the effects of external patch fields are negligible and the SE doping contrast is due to the built-in voltage across the p-n junction modified by surface band-bending. There is a good agreement between the experimental doping contrast and the calculated junction potential just below the surface, taking into account surface states, for a wide range of doping concentrations.


CORROSION ◽  
10.5006/2674 ◽  
2018 ◽  
Vol 74 (9) ◽  
pp. 1011-1022 ◽  
Author(s):  
Megan Mahrokh Dorri ◽  
Stéphane Turgeon ◽  
Maxime Cloutier ◽  
Pascale Chevallier ◽  
Diego Mantovani

Localized corrosion constitutes a major concern in medical devices made of stainless steel. The conventional approach to circumvent such a problem is to convert the surface polycrystalline microstructure of the native oxide layer to an amorphous oxide layer, a few micrometers thick. This process cannot, however, be used for devices such as stents that undergo plastic deformation during their implantation, especially those used in vascular surgery for the treatment of cardiac, neurological, and peripheral vessels. This work explores the feasibility of producing a nano-thick plastic-deformation resistant amorphous oxide layer by plasma-based surface modifications. By varying the plasma process parameters, oxide layers with different features were produced and their properties were investigated before and after clinically-relevant plastic deformation. These properties and the related corrosion mechanisms were mainly evaluated using the electrochemical methods of open-circuit potential, cyclic potentiodynamic polarization, and electrochemical impedance spectroscopy. Results showed that, under optimal conditions, the resistance to corrosion and to the permeation of ions in a phosphate buffered saline, even after deformation, was significantly enhanced.


Author(s):  
М.В. Лебедев ◽  
Т.В. Львова ◽  
А.Л. Шахмин ◽  
О.В. Рахимова ◽  
П.А. Дементьев ◽  
...  

AbstractVarious conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH_4)_2S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH_4)_2S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH_4)_2S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.


Sign in / Sign up

Export Citation Format

Share Document