Large Electron Mass Anisotropy in Anatase Ti1-xNbxO2 Transparent Conductor

2008 ◽  
Author(s):  
Yasushi Hirose ◽  
Naoomi Yamada ◽  
Shoichiro Nakao ◽  
Taro Hitosugi ◽  
Toshihiro Shimada ◽  
...  
2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2018 ◽  
Author(s):  
Peter George Gordon ◽  
Goran Bacic ◽  
Gregory P. Lopinski ◽  
Sean Thomas Barry

Al-doped ZnO (AZO) is a promising earth-abundant alternative to Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) as an n-type transparent conductor for electronic and photovoltaic devices; AZO is also more straightforward to deposit by atomic layer deposition (ALD). The workfunction of this material is particularly important for the design of optoelectronic devices. We have deposited AZO films with resistivities as low as 1.1 x 10<sup>-3</sup> Ωcm by ALD using the industry-standard precursors trimethylaluminum (TMA), diethylzinc (DEZ), and water at 200<sup>◦</sup>C. These films were transparent and their elemental compositions showed reasonable agreement with the pulse program ratios. The workfunction of these films was measured using a scanning Kelvin Probe (sKP) to investigate the role of aluminum concentration. In addition, the workfunction of AZO films prepared by two different ALD recipes were compared: a “surface” recipe wherein the TMA was pulsed at the top of each repeating AZO stack, and a interlamellar recipe where the TMA pulse was introduced halfway through the stack. As aluminum doping increases, the surface recipe produces films with a consistently higher workfunction as compared to the interlamellar recipe. The resistivity of the surface recipe films show a minimum at a 1:16 Al:Zn atomic ratio and using an interlamellar recipe, minimum resistivity was seen at 1:19. The film thicknesses were characterized by ellipsometry, chemical composition by EDX, and resistivity by four-point probe.<br>


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2021 ◽  
Vol 103 (23) ◽  
Author(s):  
Igor E. Protsenko ◽  
Alexander V. Uskov ◽  
Nikolay V. Nikonorov

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
A. Boyarsky ◽  
V. Cheianov ◽  
O. Ruchayskiy ◽  
O. Sobol

2008 ◽  
Vol 23 (29) ◽  
pp. 4709-4719 ◽  
Author(s):  
SAMINA S. MASOOD ◽  
MAHNAZ HASEEB

We calculate the second-order corrections to vacuum polarization tensor of photons at low temperatures, i.e. T ≪ 1010 K (T ≪ me). The thermal contributions to the QED coupling constant are evaluated at temperatures below the electron mass that is T < me. Renormalization of QED at these temperatures has explicitly been checked. The electromagnetic properties of such a thermal medium are modified. Parameters like electric permittivity and magnetic permeability of such a medium are no more constant and become functions of temperature.


1999 ◽  
Vol 77 (5) ◽  
pp. 385-391
Author(s):  
M Shoucri

The dispersion relation for helicon waves in a uniform bounded plasma is derived by including the finite electron mass. The eigenmodes are identified and the coupling mechanism between the Ez and Bz modes is discussed. This is important since an essential part of the physics associated with the application of helicon waves for the generation and heating of plasmas consists in coupling the whistler branch with the Ez mode, which can interact directly with the electrons.PACS No.: 52.35-g


Sign in / Sign up

Export Citation Format

Share Document