Three-Dimensional Integration Technology for Advanced Focal Planes

2008 ◽  
Vol 1112 ◽  
Author(s):  
Craig Lewis Keast ◽  
Brian Aull ◽  
James Burns ◽  
Chenson Chen ◽  
Jeff Knecht ◽  
...  

AbstractWe have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using it.

2015 ◽  
Vol 9 (1) ◽  
pp. 170-174 ◽  
Author(s):  
Xiaoling Zhang ◽  
Qingduan Meng ◽  
Liwen Zhang

The square checkerboard buckling deformation appearing in indium antimonide infrared focal-plane arrays (InSb IRFPAs) subjected to the thermal shock tests, results in the fracturing of the InSb chip, which restricts its final yield. In light of the proposed three-dimensional modeling, we proposed the method of thinning a silicon readout integrated circuit (ROIC) to level the uneven top surface of InSb IRFPAs. Simulation results show that when the silicon ROIC is thinned from 300 μm to 20 μm, the maximal displacement in the InSb IRFPAs linearly decreases from 7.115 μm to 0.670 μm in the upward direction, and also decreases linearly from 14.013 μm to 1.612 μm in the downward direction. Once the thickness of the silicon ROIC is less than 50 μm, the square checkerboard buckling deformation distribution presenting in the thicker InSb IRFPAs disappears, and the top surface of the InSb IRFPAs becomes flat. All these findings imply that the thickness of the silicon ROIC determines the degree of deformation in the InSb IRFPAs under a thermal shock test, that the method of thinning a silicon ROIC is suitable for decreasing the fracture probability of the InSb chip, and that this approach improves the reliability of InSb IRFPAs.


2013 ◽  
Vol 60 ◽  
pp. 251-259 ◽  
Author(s):  
Fredrik Forsberg ◽  
Niclas Roxhed ◽  
Andreas C. Fischer ◽  
Björn Samel ◽  
Per Ericsson ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1586
Author(s):  
Zhong Fang ◽  
Peng You ◽  
Yijie Jia ◽  
Xuchao Pan ◽  
Yunlei Shi ◽  
...  

Three-dimensional integration technology provides a promising total solution that can be used to achieve system-level integration with high function density and low cost. In this study, a wafer-level 3D integration technology using PDAP as an intermediate bonding polymer was applied effectively for integration with an SOI wafer and dummy a CMOS wafer. The influences of the procedure parameters on the adhesive bonding effects were determined by Si–Glass adhesive bonding tests. It was found that the bonding pressure, pre-curing conditions, spin coating conditions, and cleanliness have a significant influence on the bonding results. The optimal procedure parameters for PDAP adhesive bonding were obtained through analysis and comparison. The 3D integration tests were conducted according to these optimal parameters. In the tests, process optimization was focused on Si handle-layer etching, PDAP layer etching, and Au pillar electroplating. After that, the optimal process conditions for the 3D integration process were achieved. The 3D integration applications of the micro-bolometer array and the micro-bridge resistor array were presented. It was confirmed that 3D integration based on PDAP adhesive bonding is suitable for the fabrication of system-on-chip when using MEMS and IC integration and that it is especially useful for the fabrication of low-cost suspended-microstructure on-CMOS-chip systems.


2006 ◽  
Vol 970 ◽  
Author(s):  
Shi-Wei Ricky Lee ◽  
Ronald Hon

ABSTRACTThe study is a prototype design and fabrication of multi-stacked flip chip three dimensional packaging (3DP) with TSVs for interconnection. Three chips are stacked together to make a 3DP with solder bumped flip chips. TSVs are fabricated and distributed along the periphery of the middle chip. The TSVs are formed by dry etching, deep reactive ions etching (DRIE), with dimensions of 150 × 100 microns. The TSVs are plugged by copper plating. The filled TSVs are connected to the solder pads by extended pad patterns surrounding the top and the bottom of TSVs on both sides of the wafer for the middle chip. After pad patterning passivation and solder bumping, the wafer is sawed into chips for subsequent 3D stacked die assembly. Because the TSVs are located at the periphery of the middle chips and stretch across the saw street between adjacent chips, they will be sawed through their center to form two open TSVs (with half of the original size) for electrical interconnection between the front side and the back side of the middle chip. The top chip is made by the conventional solder bumped flip chip processes and the bottom chip is a carrier with some routing patterns. The three middle chips and top chip are stacked by a flip chip bonder and the solder balls are reflowed to form the 3DP structure. Lead-free soldering and wafer thinning are also implemented in this prototype. In addition to the conceptual design, all wafer level fabrication processes are described and the subsequent die stacking assembly is also presented.


2015 ◽  
Author(s):  
D. S. Temple ◽  
E. P. Vick ◽  
D. Malta ◽  
M. R. Lueck ◽  
M. R. Skokan ◽  
...  

2004 ◽  
Vol 816 ◽  
Author(s):  
J.-Q. Lu ◽  
G. Rajagopalan ◽  
M. Gupta ◽  
T.S. Cale ◽  
R.J. Gutmann

AbstractMonolithic wafer-level three-dimensional (3D) ICs based upon bonding of processed wafers and die-to-wafer 3D ICs based upon bonding die to a host wafer require additional planarization considerations compared to conventional planar ICs and wafer-scale packaging. Various planarization issues are described, focusing on the more stringent technology requirements of monolithic wafer-level 3D ICs. The specific 3D IC technology approach considered here consists of wafer bonding with dielectric adhesives, a three-step thinning process of grinding, polishing and etching, and an inter-wafer interconnect process using copper damascene patterning. The use of a bonding adhesive to relax pre-bonding wafer planarization requirements is a key to process compatibility with standard IC processes. Minimizing edge chipping during wafer thinning requires understanding of the relationships between wafer bonding, thinning and pre-bonding IC processes. The advantage of silicon-on-insulator technology in alleviating planarization issues with wafer thinning for 3D ICs is described.


Sign in / Sign up

Export Citation Format

Share Document