Wafer-Level Three-Dimensional Hyper-Integration Technology Using Dielectric Adhesive Wafer Bonding

Author(s):  
J. -Q. Lu ◽  
T. S. Cale ◽  
R. J. Gutmann
2004 ◽  
Vol 843 ◽  
Author(s):  
J. Yu ◽  
J. J. McMahon ◽  
J.-Q. Lu ◽  
R. J. Gutmann

ABSTRACTWafer level monolithic three-dimensional (3D) integration is an emerging technology to realize enhanced performance and functionality with reduced form-factor and manufacturing cost. The cornerstone for this 3D processing technology is full-wafer bonding under back-end-of-the-line (BEOL) compatible process conditions. For the first time to our knowledge, we demonstrate nearly void-free 200 mm wafer-to-wafer bonding with an ultra-thin Ti adhesive coating, annealed at BEOL-compatible temperature (400 °C) in vacuum with external pressure applied. Mechanical integrity test showed that bonded wafer pair survived after a stringent three-step thinning process (grinding/polishing/wet-etching) with complete removal of top Si wafer, while allowing optical inspection of bonding interface. Mechanisms contributing to the strong bonding at Ti/Si interface are briefly discussed.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1586
Author(s):  
Zhong Fang ◽  
Peng You ◽  
Yijie Jia ◽  
Xuchao Pan ◽  
Yunlei Shi ◽  
...  

Three-dimensional integration technology provides a promising total solution that can be used to achieve system-level integration with high function density and low cost. In this study, a wafer-level 3D integration technology using PDAP as an intermediate bonding polymer was applied effectively for integration with an SOI wafer and dummy a CMOS wafer. The influences of the procedure parameters on the adhesive bonding effects were determined by Si–Glass adhesive bonding tests. It was found that the bonding pressure, pre-curing conditions, spin coating conditions, and cleanliness have a significant influence on the bonding results. The optimal procedure parameters for PDAP adhesive bonding were obtained through analysis and comparison. The 3D integration tests were conducted according to these optimal parameters. In the tests, process optimization was focused on Si handle-layer etching, PDAP layer etching, and Au pillar electroplating. After that, the optimal process conditions for the 3D integration process were achieved. The 3D integration applications of the micro-bolometer array and the micro-bridge resistor array were presented. It was confirmed that 3D integration based on PDAP adhesive bonding is suitable for the fabrication of system-on-chip when using MEMS and IC integration and that it is especially useful for the fabrication of low-cost suspended-microstructure on-CMOS-chip systems.


2006 ◽  
Vol 53 (11) ◽  
pp. 2799-2808 ◽  
Author(s):  
M. Koyanagi ◽  
T. Nakamura ◽  
Y. Yamada ◽  
H. Kikuchi ◽  
T. Fukushima ◽  
...  

2006 ◽  
Vol 45 (4B) ◽  
pp. 3030-3035 ◽  
Author(s):  
Takafumi Fukushima ◽  
Yusuke Yamada ◽  
Hirokazu Kikuchi ◽  
Mitsumasa Koyanagi

2005 ◽  
Vol 863 ◽  
Author(s):  
Jian Yu ◽  
Yinmin Wang ◽  
Arthur W. Haberl ◽  
Hassa Bakhru ◽  
Jian-Qiang Lu ◽  
...  

AbstractThree-dimensional (3D) wafer-level integration is receiving increased attention with various wafer bonding approaches being evaluated. Recently, we explored an alternative lowtemperature Ti/Si-based wafer bonding, in which an oxidized silicon wafer was successfully bonded with a prime silicon wafer at 400°C using 30 nm sputtered Ti as adhesive. The bonded pairs show excellent bonding uniformity and mechanical integrity. Rutherford backscattering spectrometry (RBS) was applied to confirm the interdiffusion occurred in the interlayer. The bonding interface was examined by high-resolution transmission electron microscopy (HRTEM) assisted with electron energy loss spectroscopy (EELS) elemental mapping and energy dispersive X-ray spectroscopy (EDX). Characterization of the bonding interface indicates the strong adhesion achieved is attributed to an amorphous layer formed by interdiffusion of Si and oxygen into Ti interlayer and the unique ability to reduce native oxide (SiO2) by Ti even at low temperatures.


2004 ◽  
Vol 816 ◽  
Author(s):  
J.-Q. Lu ◽  
G. Rajagopalan ◽  
M. Gupta ◽  
T.S. Cale ◽  
R.J. Gutmann

AbstractMonolithic wafer-level three-dimensional (3D) ICs based upon bonding of processed wafers and die-to-wafer 3D ICs based upon bonding die to a host wafer require additional planarization considerations compared to conventional planar ICs and wafer-scale packaging. Various planarization issues are described, focusing on the more stringent technology requirements of monolithic wafer-level 3D ICs. The specific 3D IC technology approach considered here consists of wafer bonding with dielectric adhesives, a three-step thinning process of grinding, polishing and etching, and an inter-wafer interconnect process using copper damascene patterning. The use of a bonding adhesive to relax pre-bonding wafer planarization requirements is a key to process compatibility with standard IC processes. Minimizing edge chipping during wafer thinning requires understanding of the relationships between wafer bonding, thinning and pre-bonding IC processes. The advantage of silicon-on-insulator technology in alleviating planarization issues with wafer thinning for 3D ICs is described.


2008 ◽  
Vol 1112 ◽  
Author(s):  
Craig Lewis Keast ◽  
Brian Aull ◽  
James Burns ◽  
Chenson Chen ◽  
Jeff Knecht ◽  
...  

AbstractWe have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using it.


2005 ◽  
Author(s):  
Takafumi Fukushima ◽  
Yusuke Yamada ◽  
Hirokazu Kikuchi ◽  
Mitsumasa Koyanagi

Sign in / Sign up

Export Citation Format

Share Document