Inorganic matrices for immobilization of Tc-99

2009 ◽  
Vol 1193 ◽  
Author(s):  
Yulia I. Korneyko ◽  
Vladimir M. Garbuzov ◽  
Olga V. Schmidta ◽  
Boris E. Burakov

AbstractImmobilization of long-lived 99Tc requires development of chemically resistant inorganic matrices. Samples of ceramics based on crystalline Fe-Mn- and Zr-Mn-oxide compounds were synthesized at 1150°C in air, reducing or inert atmosphere from precursors doped with 5-12 wt.% Tc. All the samples obtained were studied using optical and scanning electron microscopy (SEM); powder X-ray diffraction (XRD) and microprobe analysis (EMPA). Content of Tc varied from 0.5-0.8 to 3-6 wt.% in oxide host phases and from 54 to 93 wt.% in metallic inclusions. It was demonstrated that synthesis of oxide host-phases under oxidizing or reducing conditions was not optimal due to partial Tc volatilization or metallic phase formation, respectively. The use of inert atmosphere for ceramic synthesis supports Tc incorporation into crystalline structure of stable host-phases. Development of optimal methods of precursor preparation and synthesis conditions of Tc-doped ceramic are being discussed.

2003 ◽  
Vol 807 ◽  
Author(s):  
A. G. Ptashkin ◽  
S. V. Stefanovsky ◽  
S. V. Yudintsev ◽  
S. A. Perevalov

ABSTRACTPu-bearing zirconolite and pyrochlore based ceramics were prepared by melting under oxidizing and reducing conditions at 1550 °C. 239Pu content in the samples ranged between ∼10 and ∼50 wt.%. Phase composition of the ceramics and Pu partitioning were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). Major phases in the samples were found to be the target zirconolite and pyrochlore as well as a cubic fluorite structure oxide. Normally the Pu content in the Pu host phases was 10–12 wt.%. This corresponds to the Pu content recommended for matrices for immobilization of excess weapons plutonium. At higher Pu content (up to 50 wt.%) additional phases, such as a PuO2-based cubic fluorite-structured solid solution, perovskite, and rutile were found.


2004 ◽  
Vol 824 ◽  
Author(s):  
A.S. Aloy ◽  
A.V. Trofimenko ◽  
O.A. Iskhakova ◽  
L.J. Jardine

AbstractThe results of the studies of uranium valent states in the borosilicate glasses incorporating the components of uranium-containing sludge of Mining and Chemical Combine (MCC, Zheleznogorsks.) is presented in this work. The glasses were made under oxidative and reducing conditions.The optical spectrophotometry, nuclear gamma-resonance (NGR) and X-ray diffraction (XRD) showed that glasses produced under oxidative conditions are characterized by the presence of only U(6+), while U(4+) in the reducing conditions is present along with U(6+). The ratio U(6+)/to U(4+) varies in depending on the synthesis conditions.The glass samples synthesized under oxidative conditions were researched at initial solid state. The others synthesized under reducing conditions was dissolved preliminary without distort of uranium valency.The effect of U(4+)/U(6+) ratio on the uranium leach rates from the glasses has been studied at 90° using MCC-1 test.


Cerâmica ◽  
2015 ◽  
Vol 61 (359) ◽  
pp. 328-333 ◽  
Author(s):  
R. C. Abruzzi ◽  
B. A. Dedavid ◽  
M. J. R. Pires

AbstractTin dioxide (SnO2) is a promising material with great potential for applications such as gas sensors and catalysts. Nanostructures of this oxide exhibit greater activation efficiency given their larger effective surface. The present study presents results of the synthesis and characterization of tin dioxide under different conditions via oxidation of solid tin with nitric oxide. SnO2powder was characterized primarily by X-ray diffraction and scanning electron microscopy, as well as complementary techniques such as energy-dispersive X-ray spectroscopy, dynamic light scattering and Fourier transform infrared spectroscopy. The results indicated that the established synthesis conditions were suitable for obtaining rutile tin dioxide nanoparticles with a tetragonal crystal structure.


2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


2019 ◽  
Vol 57 (3A) ◽  
pp. 21
Author(s):  
Minh Truong Xuan Nguyen ◽  
Thu Thi Minh Bui ◽  
Cuc Thi Le ◽  
Linh Huu Nguyen ◽  
Y Ngoc Pham ◽  
...  

Nickel nanostructures prepared by various methods have received considerable attentions due to their numerous applications. In this study, one-dimensional nickel nanowires (NiNWs) were synthesized by the reduction of nickel (II) chloride in polyol medium. Poly (vinylpyrrolidone) (PVP) served as the surfactant and hydrazine hydrate was used as the reductant. The effects of different experimental parameters, i.e. concentration of Ni2+, volume of N2H4, concentration of PVP and reaction temperature on the formation and morphology of NiNWs were studied. The structure, composition and surface morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the morphology as well as the diameter of NiNWs could be effectively controlled by adjusting parameters of the synthesis process.


2005 ◽  
Vol 37 (1) ◽  
pp. 27-34 ◽  
Author(s):  
S. Paris ◽  
E. Gaffet ◽  
D. Vrel ◽  
D. Thiaudiere ◽  
M. Gailhanou ◽  
...  

The control of Mechanically Activated Field Activated Pressure Assisted Synthesis hereafter called the MAFAPAS process is the main objective to be achieved for producing nanostructure materials with a controlled consolidation level. Consequently, it was essential to develop characterization tools "in situ" such as the Time Resolved X-ray Diffraction (TRXRD), with an X-ray synchrotron beam (H10, LURE Orsay) coupled to an infrared thermography to study simultaneously structural transformations and thermal evolutions. From the 2003 experiments, we took the opportunity to modify the sample-holder in order to reproduce the better synthesis conditions of the MAFAPAS process, but without the consolidation step. The versatility of the setup has been proved and could even be enhanced by the design of new sample holders. In addition, this work clearly shows that this equipment will allow, on the one hand, to make progress of the understanding of MAFAPAS mechanisms and, on the other hand, to adjust reaction parameters (mechanical activation and combustion synthesis) for producing many materials with an expected microstructure.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Cristian-R. Boruntea ◽  
Peter N. R. Vennestrøm ◽  
Lars F. Lundegaard

During screening of the phase space using KOH and 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane hydroxide (1-methyl-DABCO) under hydrothermal zeolite synthesis conditions, K-paracelsian was synthesized. Scanning electron microscopy, energy dispersive X-ray spectroscopy and ex situ powder X-ray diffraction analysis revealed a material that is compositionally closely related to the mineral microcline and structurally closely related to the mineral paracelsian, both of which are feldspars. In contrast to the feldspars, K-paracelsian contains intrazeolitic water corresponding to one molecule per cage. In the case of K-paracelsian it might be useful to consider it a link between feldspars and zeolites. It was also shown that K-paracelsian can be described as the simplest endmember of a family of dense double-crankshaft zeolite topologies. By applying the identified building principle, a number of known zeolite topologies can be constructed. Furthermore, it facilitates the construction of a range of hypothetical small-pore structures that are crystallo-chemically healthy, but which have not yet been realized experimentally.


2015 ◽  
Vol 70 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Theresa Block ◽  
Michael Johnscher ◽  
Stefan Linsinger ◽  
Ute Ch. Rodewald ◽  
Rainer Pöttgen

AbstractThe ternary aurides RE4Mg3Au10 (RE=Y, Nd, Sm, Gd–Dy) and their silver analogues were synthesized by induction melting of the elements in sealed niobium tubes. These intermetallic phases were characterized by powder X-ray diffraction. They crystallize with the Ca4In3Au10-type structure, which, from a geometrical point of view, is a ternary ordered version of Zr7Ni10 with the rare earth and magnesium atoms ordering on the four crystallographically independent zirconium sites. The structures of crystals from three differently prepared gadolinium samples were refined from single-crystal X-ray diffractometer data: Cmca, a=1366.69(3), b=998.07(4), c=1005.54(3) pm, wR2=0.0332, 1234 F2 values, 46 variables for Gd4.43Mg2.57Au10, a=1378.7(1), b=1005.3(1), c=1011.2(1) pm, wR2=0.0409, 1255 F2 values, 48 variables for Gd5.50Mg1.50Au10, and a=1350.2(5), b=995.5(1), c=1009.3(1) pm, wR2=0.0478, 1075 F2 values, 48 variables for Gd5.61Mg1.39Au10. All crystals show substantial Mg/Gd mixing on two sites. The gold atoms form a pronounced two-dimensional substructure with Au–Au distances of 278 to 297 pm in Gd4.43Mg2.57Au10. These gold blocks are condensed via magnesium atoms (278–315 pm Mg–Au). The gadolinium atoms fill larger cavities within the three-dimensional networks. The magnesium vs. gadolinium site preference is a consequence of the different coordination numbers of the cation sites. All phases show homogeneity ranges RE4+xMg3–xAg10 and RE4+xMg3–xAu10. The influence of the synthesis conditions is briefly discussed.


1990 ◽  
Vol 45 (6) ◽  
pp. 876-886 ◽  
Author(s):  
Wolfgang A. Herrmann ◽  
Josef K. Felixberger ◽  
Josef G. Kuchler ◽  
Eberhardt Herdtweck

The class of π-alkyne complexes of metals in medium and high oxidation states has been extended by the type CH3ReO2(RC≡CR′) (3a—i). Exchange of alkyne for oxo ligands under reducing conditions has been employed as a new general synthesis. Compounds 3 are thus obtained by reaction of methyltrioxorhenium(VII) (1) with the alkynes 2a—i in the presence of a ca. 1.1-fold molar amount of polymer-bound triphenylphosphane as reducing agent (desoxygenation). The structural characterization was carried out for the example of the tolan complex 3 e by virtue of a single-crystal X-ray diffraction study at —80 °C, according to which the description of compounds 3 as “rhenacyclopropenes” seems justified. Evidence from NMR investigations of 3 a and 3 c shows that no fast rotation of the respective alkyne ligand around the axis to the metal atom occurs on the NMR time scale up to at least 105 °C. A minimal rotation barrier of approximately 20 kcal/mol is thus to be estimated. Reaction of type 3 compounds (R = R′ = CH3, b; R = R′ = C2H5, c) with polymer-bound triphenylphosphane under more drastic conditions (boiling toluene) for two days effects further reduction, with the dinuclear, diamagnetic rhenium(IV) complexes 4b and 4c, resp., being formed. Sterically demanding alkynes (e.g., R = R′ = Si(CH3)3, C6H5) seem to prevent this type of reaction. According to an X-ray diffraction study, 4b has an equilateral Re2O-triangular core geometry, with the ligands O, CH3, and butyne(2) arranged in such a way that C2-symmetry results. The alkyne complexes reported here are the first ones of tetra- and pentavalent rhenium.


1998 ◽  
Vol 13 (11) ◽  
pp. 3181-3190 ◽  
Author(s):  
B. D. Begg ◽  
E. R. Vance ◽  
B. A. Hunter ◽  
J. V. Hanna

The structural behavior of zirconolite (CaZrTi2O7) under reducing conditions at high temperature has been studied, mainly by scanning electron microscopy (SEM) and x-ray diffraction (XRD), but also with x-ray absorption spectroscopy, thermogravimetry, and electron paramagnetic resonance. The partial reduction of Ti4+ to Ti3+, associated with a reducing atmosphere heat treatment, led to the initial formation of perovskite (CaTiO3) as a second phase. As the concentration of Ti3+ in the zirconolite increased, so did the amount of perovskite until the zirconolite was totally transformed into a fluorite structured phase. Analysis of the reduced zirconolites showed them to be consistently deficient in Ca and enriched in Zr, in proportion to the concentration of Ti3+. To determine how electroneutrality was preserved in these reduced zirconolites, a series of zirconolites were prepared in air using In3+ and Ga3+ as models for Ti3+. These samples were then investigated by neutron and x-ray diffraction, SEM, solid state nuclear magnetic resonance (NMR), and nuclear quadrupole resonance (NQR). 71Ga MAS NMR studies of the Ga substituted zirconolite exhibited a narrow resonance at ˜13 ppm which was attributed to six-coordinate Ga incorporated in a trace perovskite phase. Broadline 71Ga NMR and 69/71Ga NQR were required to characterize the Ga incorporated in the zirconolite. The resultant quadrupolar parameters of CQ = 30.0 ± 0.05 MHz and η = 1.0 ± 0.03 indicate that the Ga site is in a highly distorted environment which would suggest that it is located on the five-coordinate Ti site within the zirconolite lattice. These results were complemented by Rietveld refinement of the neutron diffraction data from the In-doped zirconolite sample, which was optimal when all the In was located on the five-coordinate Ti site with the excess Zr located on the Ca site. It would therefore appear that charge compensation for the presence of Ti3+ in zirconolite is effected via the substitution of an appropriate amount of Zr on the Ca site. The Ti3+-stabilized fluorite structure was readily oxidized back to a single phase zirconolite upon heating in air.


Sign in / Sign up

Export Citation Format

Share Document