Uranium Redox States in Borosilicate Compositions

2004 ◽  
Vol 824 ◽  
Author(s):  
A.S. Aloy ◽  
A.V. Trofimenko ◽  
O.A. Iskhakova ◽  
L.J. Jardine

AbstractThe results of the studies of uranium valent states in the borosilicate glasses incorporating the components of uranium-containing sludge of Mining and Chemical Combine (MCC, Zheleznogorsks.) is presented in this work. The glasses were made under oxidative and reducing conditions.The optical spectrophotometry, nuclear gamma-resonance (NGR) and X-ray diffraction (XRD) showed that glasses produced under oxidative conditions are characterized by the presence of only U(6+), while U(4+) in the reducing conditions is present along with U(6+). The ratio U(6+)/to U(4+) varies in depending on the synthesis conditions.The glass samples synthesized under oxidative conditions were researched at initial solid state. The others synthesized under reducing conditions was dissolved preliminary without distort of uranium valency.The effect of U(4+)/U(6+) ratio on the uranium leach rates from the glasses has been studied at 90° using MCC-1 test.

2003 ◽  
Vol 807 ◽  
Author(s):  
A. G. Ptashkin ◽  
S. V. Stefanovsky ◽  
S. V. Yudintsev ◽  
S. A. Perevalov

ABSTRACTPu-bearing zirconolite and pyrochlore based ceramics were prepared by melting under oxidizing and reducing conditions at 1550 °C. 239Pu content in the samples ranged between ∼10 and ∼50 wt.%. Phase composition of the ceramics and Pu partitioning were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). Major phases in the samples were found to be the target zirconolite and pyrochlore as well as a cubic fluorite structure oxide. Normally the Pu content in the Pu host phases was 10–12 wt.%. This corresponds to the Pu content recommended for matrices for immobilization of excess weapons plutonium. At higher Pu content (up to 50 wt.%) additional phases, such as a PuO2-based cubic fluorite-structured solid solution, perovskite, and rutile were found.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Yulia I. Korneyko ◽  
Vladimir M. Garbuzov ◽  
Olga V. Schmidta ◽  
Boris E. Burakov

AbstractImmobilization of long-lived 99Tc requires development of chemically resistant inorganic matrices. Samples of ceramics based on crystalline Fe-Mn- and Zr-Mn-oxide compounds were synthesized at 1150°C in air, reducing or inert atmosphere from precursors doped with 5-12 wt.% Tc. All the samples obtained were studied using optical and scanning electron microscopy (SEM); powder X-ray diffraction (XRD) and microprobe analysis (EMPA). Content of Tc varied from 0.5-0.8 to 3-6 wt.% in oxide host phases and from 54 to 93 wt.% in metallic inclusions. It was demonstrated that synthesis of oxide host-phases under oxidizing or reducing conditions was not optimal due to partial Tc volatilization or metallic phase formation, respectively. The use of inert atmosphere for ceramic synthesis supports Tc incorporation into crystalline structure of stable host-phases. Development of optimal methods of precursor preparation and synthesis conditions of Tc-doped ceramic are being discussed.


Author(s):  
Kenneth M. Richter ◽  
John A. Schilling

The structural unit of solid state collagen complexes has been reported by Porter and Vanamee via EM and by Cowan, North and Randall via x-ray diffraction to be an ellipsoidal unit of 210-270 A. length by 50-100 A. diameter. It subsequently was independently demonstrated by us in dog tendon, dermis, and induced complexes. Its detailed morphologic, dimensional and molecular weight (MW) aspects have now been determined. It is pear-shaped in long profile with m diameters of 57 and 108 A. and m length of 263 A. (Fig. 1, tendon, KMnO4 fixation, Na-tungstate; Fig. 2a, schematic of unit in long, C, and x-sectional profiles of its thin, xB, and bulbous, xA portions; Fig. 2b, tendon essentially unmodified by ether and 0.4 N NaOH treatment, Na-tungstate). The unit consists of a uniquely coild cable, c, of ṁ 22.9 A. diameter and length of 2580-3316 A. The cable consists of three 2nd-strands, s, each of m 10.6 A.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


2019 ◽  
Vol 15 (8) ◽  
pp. 850-862
Author(s):  
Mirthala Flores-García ◽  
Juan Manuel Fernández-G. ◽  
Cristina Busqueta-Griera ◽  
Elizabeth Gómez ◽  
Simón Hernández-Ortega ◽  
...  

Background: Ischemic heart disease, cerebrovascular accident, and venous thromboembolism have the presence of a thrombotic event in common and represent the most common causes of death within the population. Objective: Since Schiff base copper(II) complexes are able to interact with polyphosphates (PolyP), a procoagulant and potentially prothrombotic platelet agent, we investigated the antiplatelet aggregating properties of two novel tridentate Schiff base ligands and their corresponding copper( II) complexes. Methods: The Schiff base ligands (L1) and (L2), as well as their corresponding copper(II) complexes (C1) and (C2), were synthesized and characterized by chemical analysis, X-ray diffraction, mass spectrometry, and UV-Visible, IR and far IR spectroscopy. In addition, EPR studies were carried out for (C1) and (C2), while (L1) and (L2) were further analyzed by 1H and 13C NMR. Tests for antiplatelet aggregation activities of all of the four compounds were conducted. Results: X-ray diffraction studies show that (L1) and (L2) exist in the enol-imine tautomeric form with a strong intramolecular hydrogen bond. NMR studies show that both ligands are found as enol-imine tautomers in CDCl3 solution. In the solid state, the geometry around the copper(II) ion in both (C1) and (C2) is square planar. EPR spectra suggest that the geometry of the complexes is similar to that observed in the solid state by X-ray crystallography. Compound (C2) exhibited the strongest antiplatelet aggregation activity. Conclusion: Schiff base copper(II) complexes, which are attracting increasing interest, could represent a new approach to treat thrombosis by blocking the activity of PolyP with a potential anticoagulant activity and, most importantly, demonstrating no adverse bleeding events.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.


2020 ◽  
Vol 75 (4) ◽  
pp. 365-369
Author(s):  
Long Tang ◽  
Yu Pei Fu ◽  
Na Cui ◽  
Ji Jiang Wang ◽  
Xiang Yang Hou ◽  
...  

AbstractA new metal-organic framework, [Pb(hmpcaH)2]n (1), has been hydrothermally synthesized from Pb(OAc)2 · 3H2O and 2-hydroxy-6-methylpyridine-4-carboxylic acid (hmpcaH2; 2), and characterized by IR spectroscopy, elemental and thermogravimetric analysis, and single-crystal X-ray diffraction. In complex 1, each hmpcaH− ligand represents a three-connected node to combine with the hexacoordinated Pb(II) ions, generating a 3D binodal (3,6)-connected ant network. The crystal structure of 2 was determined. The solid-state fluorescence properties of 1 and 2 were investigated.


2002 ◽  
Vol 80 (8) ◽  
pp. 1162-1165 ◽  
Author(s):  
B Henrissat ◽  
G K Hamer ◽  
M G Taylor ◽  
R H Marchessault

A series of dodecyl 1-thio-β-D-glycosides has been synthesized and characterized (DSC, NMR, CP MAS, X-ray diffraction) as possible new marking materials with liquid-crystalline properties. These compounds undergo solid to liquid crystal phase transitions at various temperatures, which depend on the nature of the carbohydrate part of the structure. Their liquid-crystalline phases show extreme shear thinning behaviour.Key words: liquid crystal, powder X-ray diffraction, phase transition, thioglycoside, solid-state NMR, marking material


Sign in / Sign up

Export Citation Format

Share Document