Pulsed Microwave Irradiation of Graphite/Epoxy Composites

1988 ◽  
Vol 124 ◽  
Author(s):  
R. B. James ◽  
P. R. Bolton ◽  
R. A. Alvarez

ABSTRACTWe have measured the microwave-induced damage to the near-surface region of a graphite/epoxy composite material for 1.1-μs pulses at a frequency of 2.856 GHz and a pulse power of up to 8 MW. Rectangular samples were irradiated by single-pass TE10 traveling wave pulses inside a WR-284 waveguide, and in situ and post irradiation studies were performed to characterize the material modifications induced by the microwave pulses. The results of the time-resolved optical measurements in vacuo show that surface decomposition of the epoxy resin occurs for incident pulse powers exceeding 1.1 MW, and that the surface damage is accompanied by a large increase in the reflected microwave power. Simultaneous with the onset of surface decomposition, significant light emission from the sample and a large enhancement of the gas pressure in the test cell were observed. The large increments in both the reflected power and light emission are attributed to the formation of a plasma due to electrical breakdown of the gas at (or near) the sample surface.

1986 ◽  
Vol 74 ◽  
Author(s):  
R. B. James ◽  
P. R. Bolton ◽  
R. A. Alvarez ◽  
R. E. Valiga ◽  
W. H. Christie

AbstractWe have measured the microwave-induced damage to the near-surface region of silicon for 1.9-μs pulses at a frequency of 2.856 GHz and a pulse power of up to 7.2 MW. Rectangular samples were irradiated in a test section of WR-284 waveguide that was filled with freon to a pressure of 30 psig. Incident, transmitted and reflected powers were monitored with directional couplers and fast diodes. The results of the time-resolved optical measurements show that the onset of surface damage is accompanied by a large increase in the reflected power. Examination of the irradiated surfaces shows that the degree of damage is greatest near the edges of the samples. Using secondary ion mass spectrometry to profile the implanted As, we find that the microwave pulses can melt the near-surface region of the material for pulse powers exceeding a threshold value.


1988 ◽  
Vol 124 ◽  
Author(s):  
R. B. James ◽  
P. R. Bolton ◽  
R. A. Alvarez ◽  
W. H. Christie

ABSTRACTWe have used 1.1-μs microwave pulses at a frequency of 2.856 GHz to rapidly heat the near-surface region of arsenic-implanted silicon. The samples were irradiated inside a WR-284 waveguide by single-pass TE10 traveling wave pulses. Post-irradiation studies show that surface melting occurs for incident pulse powers exceeding about 3 MW. Time-resolved measurements of the microwave reflectivity (R) show that there is an abrupt and large increase in R for microwave pulse powers greater than the melt threshold. Significant light emission was also observed from the test cell, which is most likely due to the relaxation of a microwave-induced plasma formed by electrical breakdown of gas. Using secondary ion mass spectrometry, we measured the depth profile of the implanted arsenic and found that the penetration of the melt front in the near-surface region is not spatially homogeneous over the silicon surface.


1992 ◽  
Vol 262 ◽  
Author(s):  
J. L. Benton

ABSTRACTThe electrical and optical properties of defects introduced by Reactive Ion Etching (RIE) in the near surface region of Si after dry etching with various gases and plasma conditions is studied with spreading Resistance (SR), photoluminescence (PL), and capacitance-voltage profiling (C-V). Plasma etching in chlorine and fluorine based gases produce donors at the surface in both n-type and p-type, Czochralski and float-zone silicon. Isochronal annealing reveals the presence of two distinct regions of dopant compensation. The surface damage region is confined to 1000 Å and survives heat treatment at 400°C, while the defect reaction region extends ≥ 1 μm in depth and recovers by 250°C. A comprehensive picture of the interstitial defect reactions in RIE silicon is completed. The interstitial defects, Ci and Bi, created in the ion damaged near surface region, undergo recombination enhanced diffusion caused by the presence of ultraviolet light in the plasma, resulting in the long range diffusion into the Si bulk. Subsequently, the interstitial atoms are trapped by the background impurities forming the defect pairs, CiOi, CSCi, or BiOi, which are observed experimentally. The depth of the diffusion-limited trapping and the probability of forming specific pairs depends on the relative concentrations of the reactants, oxygen, carbon or boron, present in the bulk material.


1985 ◽  
Vol 51 ◽  
Author(s):  
G. E. Jellison ◽  
D. H. Lowndes ◽  
D. N. Mashburn ◽  
R. F. Wood

ABSTRACTTime-resolved reflectivity measurements of silicon and germanium have been made during pulsed KrF excimer laser irradiation. The reflectivity was measured simultaneously at both 1152 and 632.8 nm wavelengths, and the energy density of each laser pulse was monitored. The melt duration and the time of the onset of melting were measured and compared with the results of melting model calculations. For energy densities just above the melting threshold, it was found that the melt duration was never less than 20 ns for Si and 25 ns for Ge, while the maximum reflectivity increased from the value of the hot solid to that of the liquid over a finite energy range. These results, along with a reinterpretation of earlier time-resolved ellipsometry measurements, indicate that, during the melt-in process, the near-surface region does not melt homogeneously, but rather consists of a mixture of solid and liquid phases. The reflectivity at the onset of melting and in the liquid phase have been measured at both 632.8 and 1152 nm, and are compared with the results found in the literature.


2013 ◽  
Vol 768-769 ◽  
pp. 52-59 ◽  
Author(s):  
Joana Rebelo Kornmeier ◽  
Jan Šaroun ◽  
Jens Gibmeier ◽  
Michael Hofmann

Precise determination of diffraction peak positions is of particular importance for the evaluation of residual strains. Neutrons are commonly used to probe residual strains from material volumes in depths of several millimetres under the sample surface. However, neutron strain analyses are critical for the near surface region. When scanning close to a sample surface, aberration peak shifts arise, which can be of the same order as the peak shifts related to residual strains [1]. Series of Monte Carlo (M.C.) simulations using the software package RESTRAX/SIMRES [2] were carried out to simulate the peak shift as a function of gauge volume depth, monochromator curvature and other instrumental parameters, which can be used to quickly optimise the experimental setup for direct measuring residual strains near the sample surface at an arbitrary surface orientation. The M.C. simulations were compared and agree very well with the experimental data, not only for a stress free steel sample but as well for a deep rolled steel sample, measured at the STRESS-SPEC diffractometer at the research reactor FRM II, Garching (Germany).


1999 ◽  
Vol 63 (2) ◽  
pp. 211-226 ◽  
Author(s):  
P. D. Townsend ◽  
T. Karali ◽  
A. P. Rowlands ◽  
V. A. Smith ◽  
G. Vazquez

AbstractCathodoluminescence (CL) provides a sensitive analytical probe of the near-surface region of insulating materials, and some new examples of the strengths of the technique are presented using recent data from the University of Sussex. Analysis of float glass shows that by spectral and lifetime resolved data it is possible to separate the emission bands from excitonic, intrinsic imperfections, and impurities in various valence states, as a function of their depth beneath the surface. Correlation of the CL data with those from Mössbauer, ion beam and other analyses then provides the basis for models of the defect sites. CL from a second glass, ZBLAN, reveals the presence of microcrystallites and growth defects, and the work underpins confidence in the high purity gas levitation method of ZBLAN production. New results on CL of wavelength shifts with crystal field of Mn in carbonates are presented, and of Nd emission from Nd:YAG. The effects are directly linked to surface damage and dislocations caused by sample preparation steps of cutting and polishing. Methods to minimise the damage, by furnace or pulsed laser annealing, and chemical routes, are mentioned. Such surface preparation damage has a profound effect on all CL monitoring, whether for fundamental studies or mineralogical applications. Finally, a route to eliminate such problems is demonstrated, with consequent improvements in luminescence, transmission and laser performance of surface waveguides. The implications of improved surface quality range widely from mineralogical CL imaging through improved photonic materials and epitaxial growth to elimination of surface damage, and additional information.


2003 ◽  
Vol 792 ◽  
Author(s):  
W. Jiang ◽  
W. J. Weber ◽  
L. M. Wang ◽  
K. Sun

ABSTRACTGallium nitride single crystals were irradiated using energetic Au2+ ions to two fluences at room temperature. Two different damage levels and depth profiles that are characterized by near-surface damage accumulation and deeper-region damage saturation were produced. Thermal annealing at 873 K resulted in disorder recovery only in the near-surface region at low fluence. However, simultaneous irradiation with 5.4 MeV Si2+ ions during annealing at 873 K induced significant recovery over the entire damage profile at both low and high fluences. Results from high-resolution transmission electron microscopy show recovery of the crystal structure in the highly disordered surface region following the Si2+ ion irradiation. The irradiation-assisted recovery is primarily attributed to defect-stimulated recovery and epitaxial recrystallization processes due to the creation of mobile Frenkel pairs.


1984 ◽  
Vol 35 ◽  
Author(s):  
D.H. Lowndes ◽  
G.E. Jellison ◽  
R.F. Wood ◽  
S.J. Pennycook ◽  
R.W. Carpenter

ABSTRACTA KrF (248 nm) pulsed laser was used to melt 90-, 190-, and 440-nm thick amorphous silicon layers produced by Si ion implantation into (100) crystalline Si substrates. Time-resolved reflectivity measurements at two different probe wavelengths (633 nm and 1.15 μm) and post-irradiation TEM measurements were used to study the formation of an undercooled liquid Si phase and the subsequent solidification processes. The time-resolved measurements provide new experimental information about the nucleation of fine-grained Si crystallites in undercooled liquid Si, at low laser energy densities (Eℓ), and about the growth of large-grained Si in the near-surface region at higher Eℓ. Measurements with the infrared probe beam reveal the presence of a buried, propagating liquid layer at low ??. Model calculations indicate that this liquid layer is generated in part by the release of latent heat associated with the nucleation and growth process.


Author(s):  
A. K. Rai ◽  
P. P. Pronko

Several techniques have been reported in the past to prepare cross(x)-sectional TEM specimen. These methods are applicable when the sample surface is uniform. Examples of samples having uniform surfaces are ion implanted samples, thin films deposited on substrates and epilayers grown on substrates. Once device structures are fabricated on the surfaces of appropriate materials these surfaces will no longer remain uniform. For samples with uniform surfaces it does not matter which part of the surface region remains in the thin sections of the x-sectional TEM specimen since it is similar everywhere. However, in order to study a specific region of a device employing x-sectional TEM, one has to make sure that the desired region is thinned. In the present work a simple way to obtain thin sections of desired device region is described.


Sign in / Sign up

Export Citation Format

Share Document