Hot deformation behavior of low carbon advanced high strength steel (AHSS) microalloyed with boron

2009 ◽  
Vol 1243 ◽  
Author(s):  
I. Mejía ◽  
S. González-Sala ◽  
J.M. Cabrera

ABSTRACTThis research work deals the influence of boron content on the high temperature deformation behavior of a low carbon advanced high strength steel (AHSS). For this purpose high temperature tensile and compression tests are carried out at different temperatures and constant true strain rates by using an Instron testing machine equipped with a radiant cylindrical furnace. Tensile tests are carried out at different temperatures (650, 750, 800, 900 and 1000°C) at a constant true strain rate of 0.001 s-1. Uniaxial hot compression tests are also performed over a wide range of temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10-3, 10-2 and 10-1 s-1). In general, experimental results of hot tensile tests show an improvement of the hot ductility of the AHSS microalloyed with boron, although poor ductility at low temperatures (650 and 750°C). The fracture surfaces of the AHSS tested at temperatures showing the higher ductility (800, 900 and 1000°C) indicate that the fracture mode is a result of ductile failure, whereas in the region of poor ductility the fracture mode is of the ductile-brittle type failure. On the other hand, experimental results of hot compression tests show that both peak stress and peak strain tend to decrease in the AHSS microalloyed with boron, which indicates that boron generates a sort of solid solution softening effect in similar a way to other interstitial alloying elements in steel. Likewise, hot flow curves of the AHSS microalloyed with boron show an acceleration of the onset of dynamic recrystallization (DRX) and a delay of the recrystallization kinetics. Results are discussed in terms of boron segregation towards austenitic grain boundaries and second phase particles precipitation during plastic deformation and cooling.

2013 ◽  
Vol 849 ◽  
pp. 195-199
Author(s):  
Jiranuwat Porntadawit ◽  
Vitoon Uthaisangsuk ◽  
Paiboon Choungthong

Titanium alloy grade Ti-6Al-4V has been widely applied for many applications such as aircraft structural components, machine parts, and parts for medical equipments. To understand deformation behavior and microstructure evolution of the material during hot forming process is significant for achieving desired dimension and final mechanical properties of a product. In this study, stress-strain responses of the Ti-6Al-4V alloy were investigated using hot compression tests at different temperatures and strain rates. The determined flow curves of the alloy were subsequently calculated according to the constitutive models based on Cingara equation and Shafiei and Ebrahimi equation and compared with the experimental results. By this manner, influences of work hardening and dynamic recrystallization on the hot deformation behavior of material could be described. Accurate prediction of flow curves can considerably improve the forming process design.


2014 ◽  
Vol 922 ◽  
pp. 807-812 ◽  
Author(s):  
Robert Werner ◽  
Emanuel Schwaighofer ◽  
Martin Schloffer ◽  
Helmut Clemens ◽  
Janny Lindemann ◽  
...  

In the present study the high-temperature deformation behavior of a caste and subsequently HIPed β-solidifying γ-TiAl-based alloy with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at. %), termed TNM alloy, is investigated. At room temperature this alloy consists of ordered γ-TiAl, α2-Ti3Al and βo-TiAl phases. By increasing the temperature, α2and βodisorder to α and β, respectively. In order to get a better understanding of dynamic recovery and recrystallization processes during thermomechanical processing, isothermal compression tests on TNM specimens are carried out on a Gleeble®3500 simulator. These tests are conducted at temperatures ranging from 1100 °C to 1250 °C (in the α/α2+β/βo+γ phase field region) applying strain rates in the range of 0.005 s-1to 0.5 s-1up to a true strain of 0.9. The evolution of microstructure along with the dynamically recrystallized grain size during hot deformation is examined by scanning electron microscopy (SEM). The flow softening behavior after reaching the peak stress in the true stress-true strain curve is attributed to dynamic recrystallization. By using the Zener-Hollomon parameter as a temperature-compensated strain rate the dependence of flow stress on temperature and strain rate is shown to follow a hyperbolic-sine Arrhenius-type relationship.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


2019 ◽  
Vol 304 ◽  
pp. 01025
Author(s):  
Farid Abed ◽  
Wael Abuzaid ◽  
Yomna Morad

Magnesium alloys’ mechanical behavior has received increasing attention because of its high strength to weight ratio making them ideal for various industrial applications, such as vehicle components, transportation and aerospace. The objective of this work is to closely investigate the thermo-mechanical properties of magnesium alloy AZ31 at different strain rates and temperatures. Tensile tests are conducted on a 30 mm gauge length MgAZ31 specimens at two quasi-static strain rates (1.11x10−3 s−1 and 0.28 s−1) at a range of temperatures between 25 ºC and 250 ºC. Digital Image Correlation (DIC) system was used to calculate the true strain and provide quantitative assessment of the localized deformation response at high levels of deformation. The stress-strain responses of MgAZ31 show that the yield stress as well as the ultimate stress decreases as temperature increases and strain rate decreases. Moreover, the difference between the yield and ultimate stresses at both strain rates increases rapidly as temperature increases. The material shows a significant increase in ductility as temperature increases while the modulus of elasticity remains independent of change in strain rates.


1990 ◽  
Vol 213 ◽  
Author(s):  
Donald S. Shih ◽  
Gary K. Scarr

ABSTRACTThe hot-workability of a two-phase (γ+α2) alloy, Ti-48A1-2Cr-2Nb, has been studied by conducting isothermal compression tests to 0.8 true strain over the temperature range of 975–1200°C at strain rates between 1×l0−1 and 3×10−3s−1. A deformation map showing temperature, strain rate, soundness of deformation, and isostress contours was constructed. Good workability is found from the low temperature/low strain rate regime to combinations of high temperature and either high or low strain rate. The upper-limit flow stress for good workability is between 450 and 500 MPa. Deformation induced softening occurs at all conditions. SEM and TEM examinations of the deformed specimens reveal that non-uniform deformation takes place at all strain rates, but cracking occurs mostly at high strain rates (e.g. 1×10−1s−1), especially combined with low temperatures. The cracking appears to progress primarily along γ/α2interfaces. It is thought that non-uniform deformation develops channels of shear bands, which in turn promote localized recrystallization, thus accommodating higher strains.


Author(s):  
Guo-Zheng Quan ◽  
Dong-sen Wu ◽  
An Mao ◽  
Yan-dong Zhang ◽  
Yu-feng Xia ◽  
...  

AbstractIn order to investigate the tensile deformation behavior of ultra-high-strength-steel BR1500HS, a series of isothermal tensile experiments were carried out in a temperature range of 1023˜1123 K and a strain rate range of 0.01˜10 s


2013 ◽  
Vol 470 ◽  
pp. 310-315
Author(s):  
Yu Yan Liu ◽  
Jia Zhen Zang ◽  
Yang Wang ◽  
Sheng Hu

A series single-pass compression tests of HRB400 slab under the circumstances of different deformation temperature and deformation rate are carried out with Gleeble-1500D thermal simulation testing machine. The experimental results shows as follows. The true stress-true strain curves of the compression process are got from the tests. The state activation energy is 353.542kJ/mol and a mathematical model of high-temperature rheological stress is established. The calculated results by the rheological model are consistent with the experiments.


2015 ◽  
Vol 34 (6) ◽  
Author(s):  
Xiaolan Han ◽  
Shengdun Zhao ◽  
Chenyang Zhang ◽  
Shuqin Fan ◽  
Fan Xu

AbstractIn order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s


Author(s):  
Itsuki Yamaguchi ◽  
Mitsuharu Yonemura

AbstractThe recovery and recrystallization behaviors of the high-temperature γ-phase of carbon steel during deformation strongly affect the mechanical properties of steel. However, it is difficult to evaluate such behaviors at a high temperature. This study proposes the deformation behavior of the high-temperature γ-phase of low-carbon steel based on the quantitative observation of dislocation density and vacancies in the Ni–30 mass pct Fe alloy. This alloy was used because its stacking fault energy (60 to 70 mJ m-2) is similar to that of low-carbon steel. Uniaxial compression tests were conducted at a strain rate of 10−3 s−1 and 1473 K (1200 °C) for dynamic recrystallization and at 293 K (20 °C) for work hardening. The compression process was interrupted at different strain values to systematically investigate microstructural changes. The changes in work hardening, recovery, and recrystallization behaviors were obtained from the true stress–true strain curves of the uniaxial compression tests. Further, the microstructure changes during cold and hot uniaxial compression were investigated from the viewpoint of lattice defects by X-ray diffraction, positron annihilation analysis, transmission electron microscopy, and electron backscatter diffraction to comprehend the work hardening, dynamic recovery (DRV), and dynamic recrystallization (DRX). This study helps understand the DRV, DRX, and work hardening behaviors in the γ-phase of the Ni–30 mass pct Fe alloy during cold and hot compression.


2011 ◽  
Vol 194-196 ◽  
pp. 175-178
Author(s):  
Xin Zhang ◽  
Yi Xiong

The effects of temperature and strain rate on the thermal deformation-behavior of Cu-P weathering steel were studied by using thermal simulator. And the true stress-true strain curves at different thermal deformation conditions were got. Then the features of the microstructure of the steel under different temperatures and strain rates were analyzed. The results show that with the same deformation dimensions and strain rates, when the deformation temperatures were higher, the recrystallization would proceed much easier, and the size of the recrystal grains could be also larger. And with the same deformation dimensions and temperatures, when the strain rates were lower, the recrystallization could also occur easier, and the proportion and size of the recrystal grains were larger.


Sign in / Sign up

Export Citation Format

Share Document