Modeling of Flow Curve at High Temperature for a Ti-6Al-4V Alloy

2013 ◽  
Vol 849 ◽  
pp. 195-199
Author(s):  
Jiranuwat Porntadawit ◽  
Vitoon Uthaisangsuk ◽  
Paiboon Choungthong

Titanium alloy grade Ti-6Al-4V has been widely applied for many applications such as aircraft structural components, machine parts, and parts for medical equipments. To understand deformation behavior and microstructure evolution of the material during hot forming process is significant for achieving desired dimension and final mechanical properties of a product. In this study, stress-strain responses of the Ti-6Al-4V alloy were investigated using hot compression tests at different temperatures and strain rates. The determined flow curves of the alloy were subsequently calculated according to the constitutive models based on Cingara equation and Shafiei and Ebrahimi equation and compared with the experimental results. By this manner, influences of work hardening and dynamic recrystallization on the hot deformation behavior of material could be described. Accurate prediction of flow curves can considerably improve the forming process design.

2009 ◽  
Vol 1243 ◽  
Author(s):  
I. Mejía ◽  
S. González-Sala ◽  
J.M. Cabrera

ABSTRACTThis research work deals the influence of boron content on the high temperature deformation behavior of a low carbon advanced high strength steel (AHSS). For this purpose high temperature tensile and compression tests are carried out at different temperatures and constant true strain rates by using an Instron testing machine equipped with a radiant cylindrical furnace. Tensile tests are carried out at different temperatures (650, 750, 800, 900 and 1000°C) at a constant true strain rate of 0.001 s-1. Uniaxial hot compression tests are also performed over a wide range of temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10-3, 10-2 and 10-1 s-1). In general, experimental results of hot tensile tests show an improvement of the hot ductility of the AHSS microalloyed with boron, although poor ductility at low temperatures (650 and 750°C). The fracture surfaces of the AHSS tested at temperatures showing the higher ductility (800, 900 and 1000°C) indicate that the fracture mode is a result of ductile failure, whereas in the region of poor ductility the fracture mode is of the ductile-brittle type failure. On the other hand, experimental results of hot compression tests show that both peak stress and peak strain tend to decrease in the AHSS microalloyed with boron, which indicates that boron generates a sort of solid solution softening effect in similar a way to other interstitial alloying elements in steel. Likewise, hot flow curves of the AHSS microalloyed with boron show an acceleration of the onset of dynamic recrystallization (DRX) and a delay of the recrystallization kinetics. Results are discussed in terms of boron segregation towards austenitic grain boundaries and second phase particles precipitation during plastic deformation and cooling.


2011 ◽  
Vol 311-313 ◽  
pp. 596-599
Author(s):  
Liu Yang ◽  
Ying She Luo ◽  
Bo Yang

In order to achieve the numerical calculating rheological forming process of materials, a series of tension experiments under the different temperatures and different strain rates were done on the standard samples of sheet TC1 titanium alloy. The experimental results were analyzed theoretically and the rheological stress constitutive models of TC1 titanium alloy are built combining the strong points of the Perzyna model and Johnson-Cook model. Comparing the calculation results conducted from the model with the experimental results, it proves that the model can reflect the temperature effect and strain rate effect of TC1 titanium alloy.


2015 ◽  
Vol 816 ◽  
pp. 648-654
Author(s):  
Yan Hui Yang ◽  
Dong Liu ◽  
Jian Bing Peng ◽  
Jian Guo Wang ◽  
Guo Wei Liu ◽  
...  

Hot deformation behavior of cast-and-homogenized GH706-ingot material was studied in this work. Isothermal uniaxial compression tests were performed at temperatures (°C): 990, 1020, 1050, 1080 and 1100 with strain rates (s-1): 0.01, 0.1 and 1. The stress-strain curves as well as changes in microstructures of various hot deformed specimens were analyzed. Inhomogeneous microstructures were found in the specimens and the flow curves were resulted from the comprehensive functions of microstructures change in all part of the specimens. The constitutive relationship of alloy GH706 has been established by linear regression analysis of the experimental data taken from the Arrhenius equations as a model. Then hot compression tests were carried out to estimate the allowable reductions, and 52.5% and 50.6% are suggested as the allowable reductions during cogging processing of GH706 alloy in each blow at 1110°C and 1130°C.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1521
Author(s):  
Maxim G. Khomutov ◽  
Sayed M. Amer ◽  
Ruslan Yu. Barkov ◽  
Maria V. Glavatskikh ◽  
Alexander Yu. Churyumov ◽  
...  

The compression tests in a temperature range of 400–540 °C and strain rates of 0.1–15 s−1 were applied to novel Al-Cu-Y(Er)-Mg-Mn-Zr alloys to investigate their hot deformation behavior. The higher volume fraction of the intermetallic particles with a size of 0.5–4 µm in the alloys caused an increase in flow stress. Hyperbolic sine law constitutive models were constructed for the hot deformation behavior of Al-Cu-Y(Er)-Mg-Mn-Zr alloys. Effective activation energy has a higher value in the alloys with Er than in the alloys with Y. According to the processing maps, the temperature range of 420–480 °C and strain rates higher than 5 s−1 are the most unfavorable region for hot deformation for the investigated alloys. The deformation at 440 °C and 15 s−1 led to cracks on the surface of the sample. However, internal cracks were not observed in the microstructure after deformation. The optimum hot deformation temperatures were in a range of 500–540 °C and at strain rates of 0.1–15 s−1.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1726 ◽  
Author(s):  
Tongyang Li ◽  
Bin Zhao ◽  
Xiqun Lu ◽  
Hanzhang Xu ◽  
Dequan Zou

The flow behavior of the SnSbCu alloy is studied experimentally by the compression tests in the range of the strain rates from 0.0001 to 0.1 s−1 and temperature from 293 to 413 K. Based on the experimental data, three constitutive models including the Johnson–Cook (J–C), modified Zerilli–Armstrong (Z–A), and Arrhenius-type (A-type) models are compared to find out an optimum model to describe the flow behavior of the SnSbCu alloy. The results show that the J–C model could predict the flow behavior of the SnSbCu alloy accurately only at some specific strain rates and temperature near the reference values. The modified Z–A and A-type constitutive models can give better fitting results than the J–C model. While, at high strains, the predictive values of the modified Z–A model have larger errors than those at low strains, which means this model has limitations at high strains. By comparison, the A-type model could predict the experimental results accurately at the whole strain range, which indicates that it is a more suitable choice to describe the flow behavior of the SnSbCu alloy in the focused range of strain rates and temperatures. The work is beneficial to solve the tribological problem of the bearing of the marine engine by integrating the accurate constitutive model into the corresponding numerical model.


2018 ◽  
Vol 913 ◽  
pp. 30-36
Author(s):  
Ran Liu ◽  
Hui Huang ◽  
Ya Liu ◽  
Li Rong

To study the hot deformation behavior of Al-Mg-Er alloy, hot compression tests were conducted on a Gleeble-1500D thermal simulator at the temperature range of 200-500°C with the strain rates from 0.001 to 10s-1. With the increase in the deformation temperature and the decrease in strain rates, the flow stress of the Al-Mg-Er alloy decreased. Processing maps were constructed to study on hot workability characteristics. The results showed that the flow stress curves exhibited the typical dynamic recrystallization characteristics and the stress decreased with the increase of deformation temperature and the decrease of strain rate. Moreover, the processing maps were established on the basis of dynamic material model and Prasad’s instability criterion.


2013 ◽  
Vol 652-654 ◽  
pp. 1080-1083
Author(s):  
Chun Xia Wang ◽  
Fu Xiao Yu ◽  
Da Zhi Zhao ◽  
Xiang Zhao ◽  
Liang Zuo

The deformation behavior of DC cast Al-2Si and Al-15Si alloys have been studied by means of compression test at temperature range of 300-500°C and strain rate range of 0.01-5 s-1. The results show that the flow stress of the Al-Si alloys increases with decreasing compression temperature and increasing strain rate. The flow curves determined from the compression tests exhibit that the deformation of the materials is controlled by two competing mechanisms: strain hardening and flow softening. Higher silicon content in the alloys also leads to higher flow stress during deformation and tend to show more significant flow softening. Particle damage during the deformation may have an influence on the flow curves of the alloys.


2014 ◽  
Vol 511-512 ◽  
pp. 63-69
Author(s):  
Rui Jia ◽  
Fu Zhong Wang

Deformation behavior of steel 33Μn2v for oil well tube was studied by hot compression tests conducted at various temperatures and strain rates.The Kumar model was developed to predict the hot deformation behavior of steel 33Mn2V for oil well tube.In this regard,the hot compression tests were carried out at the temperatures from 750°C to 1200°C and at the strain rates of 0.02s1 to 0.16 s1.The experimental data were then used to determine the constants of developed constitutive equations. The Kumar model can be represented by ZenerHollomon parameter in a hyperbolic sinusoidal equation form.The apparent activation energy of deformation is calculated to be 342.1481kJ/Mol.Dynamic recrystallization of steel 33Mn2V occur and the completion of the critical deformation is small,termination error and the initial deformation is smaller.Therefore,its easy for the steel 33Mn2V to the occurrence and completion of dynamic recrystallization.


Sign in / Sign up

Export Citation Format

Share Document