Variations of Electron Traps in MBE AlxGa1−xAs by Rapid Thermal Processing

1988 ◽  
Vol 126 ◽  
Author(s):  
H. Ueda ◽  
A. Kitagawa ◽  
Y. Tokuda ◽  
A. Usami ◽  
T. Wada ◽  
...  

ABSTRACTUsing deep level transient spectroscopy we have studied the variations of electron traps in molecular beam epitaxial (MBE) AlxGa1−xAs by rapid thermal processing (RTP) using halogen lamps. RTP was performed at 700, 800 and 900 °C for 6s under a SiO2 cap and a capless condition. It is found that during RTP the electron traps with the thermal activation energies of 0.89 and 0.99 eV are produced in Al0.lGa0.9As and Al0.3Ga0.7As, respectively. The thermal activation energies of these traps are close to the reported ones for the trap EL2 in AlxGaM1−xAs. Therefore, these traps are probably related to the trap EL2. In the RTP samples under a capless condition, the concentrations of the trap EL2 in AlxGa1−xAs (x=0.1, 0.3) decreases from the surface to the deeper position in MBE layers, while the depth profile of the trap EL2 in GaAs is flat. It is suggested that the origin of the trap EL2 formation in AlxGa1−xAs is different from one in GaAs.

1987 ◽  
Vol 92 ◽  
Author(s):  
Akio Kitagawa ◽  
Yutaka Tokuda ◽  
Akira Usami ◽  
Takao Wada ◽  
Hiroyuki kano

ABSTRACTRapid thermal processing (RTP) using halogen lamps for a Si-doped molecular beam epitaxial (MBE) n-GaAs layers was investigated by deep level transient spectroscopy. RTP was performed at 700°C, 800°C and 900°C for 6 s. Two electron traps NI ( Ec-0.5-0.7eV) and EL2 (Ec - 0.82 eV) are produced by RTP at 800 and 900°C.The peculiar spatial variations of the Nl and EL2 concentration across the MBE GaAs films are observed. The larger concentrations of the trap N1 and EL2 are observed near the edge of the samples, and the minima of N1 and EL2 concentration lie between the center and the edge of the sample. It seems that these spatial variations of N1 and EL2 concentration are consistent with that of the thermal stress induced by RTP. Furthermore, the EL2 concentration near the edge of the sample is suppressed by the contact with the GaAs pieces on the edge around the sample during RTP.


1989 ◽  
Vol 146 ◽  
Author(s):  
A. Ito ◽  
A. Kitagawa ◽  
Y. Tokuda ◽  
A. Usami ◽  
H. Kano ◽  
...  

ABSTRACTVariations of electron traps in molecular-beam-epitaxial (MBE) GaAs layers grown on Si substrates by rapid thermal processing (RTP) have been investigated with deep level transient spectroscopy (DLTS). RTP was performed at 760 – 910 °C for 9s with Si02 encapsulant. In contrast with the layer on GaAs, the traps AI(Ec – 0.65eV) and A2(Ec – 0.81eV) are observed in the layer on Si. The trap EL2h, one of the EL2 family, is produced by RTP in the layer on Si. Some GaAs surfaces were etched to prove the deeper region. In the surface region, the concentrartion of EL2h is comparable to that of EL2 produced by RTP in the layer on GaAs. On the other hand, in ∿ 1 μm below the surface, the concentration of EL2h is about ten times as large as that of EL2. It is speculated that the stress from the GaAs/Si interface enhances the production of the EL2h concentration. In addition to the EL2, the traps R1(Ec – 0.23 eV), R2(Ec – 0.40 eV), R3(Ec – 0.43eV) and R4(Ec – 0.56 eV) are produced by RTP in the GaAs grown on Si.


1989 ◽  
Vol 65 (2) ◽  
pp. 606-611 ◽  
Author(s):  
Akio Kitagawa ◽  
Akira Usami ◽  
Takao Wada ◽  
Yutaka Tokuda ◽  
Hiroyuki Kano

1988 ◽  
Vol 126 ◽  
Author(s):  
Yutaka Tokuda ◽  
Masayuki Katayama ◽  
Nobuo Ando ◽  
Akio Kitagawa ◽  
Akira Usami ◽  
...  

ABSTRACTEffects of rapid thermal processing (RTP) on SiO2/GaAs interfaces have been investigated with Auger electron spectroscopy and X-ray photoelectron spectroscopy. SiO2 films of 100, 175, 200 and 1250 nm thickness have been deposited on liquid encapsulated Czochralski-grown (100) n-type GaAs wafers by the RF sputtering method. RTP has been performed at 800°C for 6 s. For comparison, conventional furnace processing (CFP) has also been performed at 800°C for 20 min for 200-nm-thick SiO2/GaAs. The Ga is observed on the outer SiO2 surface for RTP samples as well as CFP samples. This indicates that the outdiffusion of Ga occurs after only 6 s at 800°C even through 1250-nm-thick SiO2 films. The depth profile of Ga reveals the pile-up of Ga on the outer SiO2 surface for both RTP and CFP samples. The amount of Ga on the outer surface gradually increases in the thickness range 1250 to 175 nm. The As is also observed on the outer surface. The amount of Ga and As on the outer surface rapidly increases at 100 nm thickness. Electron traps in RTP samples have been studied with deep-level transient spectroscopy. Different electron traps are produced in GaAs by RTP between 100-nm- and 200-nm-thick SiO2/GaAs. It is thought that the production of different traps by RTP is related to the amount of Ga and As loss through SiO2 films from GaAs.


2002 ◽  
Vol 745 ◽  
Author(s):  
Sung-Yong Chung ◽  
Paul R. Berger ◽  
Z-Q. Fang ◽  
Phillip E. Thompson

ABSTRACTDeep-level transient spectroscopy (DLTS) measurements were performed on Si:Sb and Si:B n+-p step junction diodes grown by LT-MBE at various growth temperatures. The trap density dependence on growth temperature decreases with increasing temperature. However, segregation and diffusion increase with increasing temperature. Electron traps, E1 (0.42–0.45eV) and E2 (0.257eV), and hole traps, H1 (0.38–0.41eV), were found in B-doped layer grown at 370°C, 420°C, 500°C, and 600°C. These traps have been characterized by their capture cross-section, activation energy level, and trap density. The origins of the dominating electron traps are hypothesized as the association with pure divacancy defects. E1 level can be assigned for singly negatively charged divacancy V(0/-) + α and E2 level for doubly negatively charged divacancy V(-2/-).


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


2006 ◽  
Vol 955 ◽  
Author(s):  
Mo Ahoujja ◽  
S Elhamri ◽  
M Hogsed ◽  
Y. K. Yeo ◽  
R. L. Hengehold

ABSTRACTDeep levels in Si doped AlxGa1−xN samples, with Al mole fraction in the range of x = 0 to 0.30, grown by radio-frequency plasma activated molecular beam epitaxy on sapphire substrates were characterized by deep level transient spectroscopy (DLTS). DLTS measurements show two significant electron traps, P1 and P2, in AlGaN at all aluminum mole fractions. The electron trap, P2, appears to be a superposition of traps A and B , both of which are observed in GaN grown by various growth techniques and are thought to be related to VGa-shallow donor complexes. Trap P1 is related to line defects and N-related point defects. Both of these traps are distributed throughout the bulk of the epitaxial layer. An additional trap P0 which was observed in Al0.20Ga0.80N and Al0.30Ga0.70N is of unknown origin, but like P1 and P2, it exhibits dislocation-related capture kinetics. The activation energy measured from the conduction band of the defects is found to increase with Al mole content, a behavior consistent with other III-V semiconductors.


2011 ◽  
Vol 295-297 ◽  
pp. 777-780 ◽  
Author(s):  
M. Ajaz Un Nabi ◽  
M. Imran Arshad ◽  
Adnan Ali ◽  
M. Asghar ◽  
M. A Hasan

In this paper we have investigated the substrate-induced deep level defects in bulk GaN layers grown onp-silicon by molecular beam epitaxy. Representative deep level transient spectroscopy (DLTS) performed on Au-GaN/Si/Al devices displayed only one electron trap E1at 0.23 eV below the conduction band. Owing to out-diffusion mechanism; silicon diffuses into GaN layer from Si substrate maintained at 1050°C, E1level is therefore, attributed to the silicon-related defect. This argument is supported by growth of SiC on Si substrate maintained at 1050°C in MBE chamber using fullerene as a single evaporation source.


Sign in / Sign up

Export Citation Format

Share Document