Influence of Stoichiometry on the Strength of Nickel Beryllide

1988 ◽  
Vol 133 ◽  
Author(s):  
T. G. Nieh ◽  
J. Wadsworth ◽  
C. T. Liu

ABSTRACTIt is demonstrated that the hardness of NiBe is dependant upon its stoichiometry; a minimum hardness is observed at the equiatomic composition. This behavior is similar to intermetallics that have the same crystallographic structure, e.g., NiAI and CoAl. The hardness increase for the off-stoichiometric compositions is a result of defect and anti-site defect structures, but may also, in part, be caused by interstitial oxygen. Nickel beryllides appear to have some intrinsic room temperature ductility, as evidenced by the absence of cracking near hardness indentations.

1989 ◽  
Vol 4 (6) ◽  
pp. 1347-1353 ◽  
Author(s):  
T. G. Nieh ◽  
J. Wadsworth ◽  
C. T. Liu

The elastic properties of nickel beryllide have been evaluated from room temperature to 1000 °C. The room temperature modulus is measured to be 186 GPa, which is relatively low by comparison with other B2 aluminides such as NiAl and CoAl. Hardness measurements were carried out on specimens that had compositions over the range from 49 to 54 at. % Be, using both a Vickers microhardness tester and a nanoindentor. It was found that the hardness of NiBe exhibits a minimum at the equiatomic composition. This behavior is similar to that of aluminides of the same crystal structure, e.g., NiAl and CoAl. The effect of interstitial oxygen on the hardness of NiBe has also been studied and the results show that the presence of oxygen in NiBe can cause a significant increase in hardness. It is demonstrated that the hardness increase for the off-stoichiometric compositions is primarily caused by interstitial oxygen and can only be attributed partially to anti-site defects generated in off-stoichiometric compositions. Nickel beryllides appear to have some intrinsic room temperature ductility, as evidenced by the absence of cracking near hardness indentations.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


2006 ◽  
Vol 510-511 ◽  
pp. 842-845 ◽  
Author(s):  
Noriko Bamba ◽  
Kentaro Kato ◽  
Toshinori Taishi ◽  
Takayuki Hayashi ◽  
Keigo Hoshikawa ◽  
...  

Langasite (La3Ga5SiO14: denoted by LGS) single crystal is one of the lead free piezoelectric materials with high piezoelectricity that is maintained up to its melting point (1470°C). Although LGS single crystals have usually been grown by Czochralski (CZ) method in oxygen contained atmosphere to prevent evaporation of Ga, they were grown by the vertical Bridgman (VB) method in Ar atmosphere without oxygen, and their properties were evaluated in this work. Transparent and colorless LGS single crystals were successfully obtained without Ga evaporation by the VB method in Ar atmosphere, and their resistivity at room temperature was much higher than that grown by conventional CZ method. Piezoelectric constant d11 of the crystal grown by the VB method was 6 x 10-12 C/N, which was close to that of the crystal grown by CZ method. The colorless transparent LGS single crystal turned to orange and its resistivity decreased by annealing in air. Since an orange-colored transparent LGS single crystal has been grown by conventional CZ method, this indicates that color change and the resistivity decrease of LGS crystal is caused by extra interstitial oxygen atoms in the crystal.


2010 ◽  
Vol 528 (1) ◽  
pp. 355-362 ◽  
Author(s):  
Satoshi Emura ◽  
Kaneaki Tsuzaki ◽  
Koichi Tsuchiya

2021 ◽  
pp. 163307
Author(s):  
Ji Young Kim ◽  
Eun Soo Park ◽  
Taegu Lee ◽  
Seunghwa Ryu ◽  
Seung-Eon Kim ◽  
...  

Author(s):  
E. A. Tolkacheva ◽  
V. P. Markevich ◽  
L. I. Murin

The isotopic content of natural silicon (28Si (92.23 %), 29Si (4.68 %) и 30Si (3.09 %)) affects noticeably the shape of IR absorption bands related to the oxygen impurity atoms. In the present work an attempt is undertaken to determine the positions of local vibrational modes (LVMs), related to quasimolecules 28Si16OS29Si and 28Si16OS30Si (OS – substitutional oxygen atom), for the absorption spectra measured at room temperature. An estimation of the isotopic shifts of corresponding modes is done by fitting the shape of the experimentally measured absorption band related to the vacancy–oxygen center in irradiated Si crystals. The LVM isotope shifts are found to be equal 2,2 ± 0.25 cm–1 for 28Si-16OS29Si and 4,3 ± 0,9 см–1 for 28Si-16OS30Si in relation to the basic band due to 28Si-16OS28Si, and the full width at half maximum of the A-center absorption band (28Si-16OS28Si) is 5,3 ± 0.25 cm–1. By means of infrared absorption spectroscopy a clear correlation between the disappearance of the divacancy (V2) in the temperature range 200–275 ºС and appearance of two absorption bands with their maxima at 825.8 and 839.2 cm–1 in irradiated oxygen-rich Si crystals is found. The band positioned at 825.8 cm–1 is assigned to a divacancy-oxygen defect V2O formed via an interaction of mobile V2 with interstitial oxygen (Oi ) atoms. The 839.2 cm–1 band is much more pronounced in neutron irradiated samples as compared to samples irradiated with electrons. We argue that it is related to a trivacancy–oxygen defect (V3O) formed via an interaction of mobile V3 with Oi atoms.


2018 ◽  
Vol 64 (3) ◽  
pp. 240 ◽  
Author(s):  
Joel Diaz-Reyes ◽  
Jorge Indalecio Contreras-Rascón ◽  
Mariana Enelia Linares-Avilés ◽  
José Francisco Sánchez-Ramírez ◽  
José Eladio Flores-Mena ◽  
...  

It presents the characterization of rare earths (Eu,Ce)-doped CdS nanofilms that were synthesised by the growth technique chemical bath deposition (CBD) at the reservoir temperature of 70±2°C. The doping of CdS with rare earths is performed by varying the synthesis time from 60 to 135 min. The rare earths molar concentration was range from 0.0≤x≤3.5, which was determined by energy dispersive X-ray spectroscopy. X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS nanofilms showed the zinc blende (ZB) crystalline phase. The CdS average nanocrystal size was ranged from 1.84 to 2.67 nm that was determined by the Debye–Scherrer equation from ZB (111) direction, which was confirmed by transmission electron microscopy. Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the (Eu,Ce)-doped CdS, which denotes the Raman shift of the characteristic peak about 305 cm−1 of the CdS nanocrystals. The CdS nanofilms exhibit a direct bandgap that slightly decreases with increasing doping, from 2.50 to 2.42 eV, which was obtained by room temperature transmittance. The room-temperature photoluminescence of CdS shows the band-to-band transition at 2.88 eV, which is associated to quantum confinement and a dominant radiative band at 2.37 eV that is called the optical signature of interstitial oxygen. The Eu3+-doped CdS photoluminescence shows the dominant radiative band at 2.15 eV, which is associated to the intra-4f radiative transition of Eu3+ ions that corresponds to the magnetic dipole transition, (5D0→7F1). For the Ce3+-doped CdS the dominant radiative transition, at 2.06 eV, is clearly redshifted, although the passivation of the CdS nanofilms by Ce was approximately by a factor about 21 for the best results.


JOM ◽  
1985 ◽  
Vol 37 (4) ◽  
pp. 36-40 ◽  
Author(s):  
Anthony J. Bryhan

Sign in / Sign up

Export Citation Format

Share Document