The effect of grain size on the room-temperature ductility of NiAl

1990 ◽  
Vol 24 (12) ◽  
pp. 2381-2384 ◽  
Author(s):  
P. Nagpal ◽  
I. Baker
2010 ◽  
Vol 638-642 ◽  
pp. 1439-1444
Author(s):  
Masuo Hagiwara ◽  
Tomoyuki Kitaura

The grain sizes of two kinds of orthorhombic alloys, namely (O+B2) Ti-22Al-11Nb-2Mo -1Fe and (O+2) Ti-27.5Al-13Nb have been successfully reduced by the addition of trace boron (B) (less than 0.12 wt.%). For example, the grain size in the B2 solution-treated condition was reduced from 1 mm to 80 m by the addition of 0.05% B for both alloys. The tensile elongation of Ti-22Al-11Nb-2Mo-1Fe at room temperature and 650C was increased from 0.3% to 4.3%, and from 8.2% to 30.3%, respectively, by the addition of 0.10% B. Ti-27.5Al-13Nb also showed an improved room temperature ductility by the minor B addition.


Author(s):  
L. S. Lin ◽  
G. W. Levan ◽  
S. M. Russell ◽  
C. C. Law

Recent efforts at P&W have shown that the addition of cobalt to binary NiAl results in an appreciable increase in room temperature ductility. One version of this ternary alloy, designated VIM A, has a composition of Ni-30 at.% Al-35 at.% Co. The addition of 0.5 at.% Hf to this alloy (designated VIM AH) results in an improvement in yield strength at 760°C. Room temperature properties were not found to be significantly affected by the Hf addition. This discussion will focus on the microstructures of alloys VIM A and VIM AH and their relationship to the mechanical properties observed in compression at room temperature and 760°C.The addition of hafnium reduced the grain size of VIM AH alloy. After room temperature compression, both alloys show an ordered bcc (B2) matrix and precipitates which are distributed primarily along grain boundaries. These precipitates were identified by microdiffraction to be ordered fcc (L12) gamma prime for VIM A and hexagonal (A3) for VIM AH.


Author(s):  
L. S. Lin ◽  
G. W. Levan ◽  
S. M. Russell ◽  
C. C. Law

AEM examinations of a NiAlCo alloy of composition Ni-29 at.% Al-21 at.% Co after room temperature compression show that the microstructure consists of a twinned tetragonal matrix (L10, marked A in Figure 1a) and ordered fcc gamma prime precipitates (L12, marked B in Figure 1a) along grain boundaries. The compressive yield strengths of this alloy at room temperature and 760°C are 754 MPa and 163 MPa respectively. It also has superior room temperature ductility as compared to binary NiAl. An addition of 5 at.% Ti at the expense of Ni was made to this alloy in order to increase the yield strengths. The quarternary alloy shows compressive yield strengths of 976 MPa and 403 MPa at room temperature and 760°C, respectively, indicating that the Ti addition is having the desired effect.Comparison of the microstructures of the two alloys after room temperature compression (Figures la and lb) shows that the Ti containing alloy has a smaller grain size. X-ray diffraction data indicate that the gamma prime volume fraction increases from 10% to 20% as the result of the Ti addition. Titanium was also found to stabilize the B2 matrix (marked A in Figure lb) as no tetragonal L10 phase was found. All precipitates along grain boundaries were identified by micro-diffraction to be gamma prime.


1991 ◽  
Vol 246 ◽  
Author(s):  
Ananda S. Murthy ◽  
Edward Goo

AbstractNickel aluminide intermetallic compounds are of interest due to their good high temperature properties. However, they are associated with room temperature brittleness. A method for enhancing the room temperature ductility of polycrystalline NiAI in the composition range of 62-65 at.% by using the martensitic transformation is presented. Transformationinduced ductilities up to 4.5% in specimens with coarse grains have been obtained in our investigation. The effects of Ni concentration, grain size and quenching rate from the parent B2 phase are studied and optimized to induce maximum transformation ductility. The original excellent high temperatu re properties are restored from the ‘soft’ room temperatu re martensitic phase by heating to an appropriate temperature to revert to the equilibrium phases.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


1989 ◽  
Vol 4 (6) ◽  
pp. 1347-1353 ◽  
Author(s):  
T. G. Nieh ◽  
J. Wadsworth ◽  
C. T. Liu

The elastic properties of nickel beryllide have been evaluated from room temperature to 1000 °C. The room temperature modulus is measured to be 186 GPa, which is relatively low by comparison with other B2 aluminides such as NiAl and CoAl. Hardness measurements were carried out on specimens that had compositions over the range from 49 to 54 at. % Be, using both a Vickers microhardness tester and a nanoindentor. It was found that the hardness of NiBe exhibits a minimum at the equiatomic composition. This behavior is similar to that of aluminides of the same crystal structure, e.g., NiAl and CoAl. The effect of interstitial oxygen on the hardness of NiBe has also been studied and the results show that the presence of oxygen in NiBe can cause a significant increase in hardness. It is demonstrated that the hardness increase for the off-stoichiometric compositions is primarily caused by interstitial oxygen and can only be attributed partially to anti-site defects generated in off-stoichiometric compositions. Nickel beryllides appear to have some intrinsic room temperature ductility, as evidenced by the absence of cracking near hardness indentations.


Sign in / Sign up

Export Citation Format

Share Document