Fabrication and Electrical Properties of MBE Grown Metal-Gallium and Metal-Arsenic Compounds on Ga1-xAlxAs

1988 ◽  
Vol 144 ◽  
Author(s):  
C.J. Palmstrøm ◽  
K.C. Garrison ◽  
B.-O. Fimland ◽  
T. Sands ◽  
R.A. Bartynski

ABSTRACTFilms of CoGa and CoAs have been deposited on Ga1-xAlxAs surfaces. CoAs films were found to be highly textured, but not single crystal. For CoGa films, however, single crystal growth was observed. The crystalline quality of the (100) oriented CoGa was good as determined by Rutherford backscattering with channeling measurements (χmin ∼7%) and cross-sectional transmission electron microscopy. Schottky barrier diodes fabricated from (100)CoGa/Ga1-xAlxAs and CoAs/Ga1-xAlxAs showed good characteristics with low ideality factors, n<1.15. Good Schottky barrier behavior was also found for (100)ErAs/GaAs structures.

2010 ◽  
Vol 25 (6) ◽  
pp. 1191-1195 ◽  
Author(s):  
Guanghui Cao ◽  
Taoping Ou ◽  
Hua Jiang ◽  
Alan M. Russell

The microstructure of Pt-modified γ′-Ni3Al + γ-Ni coating on CMSX-4 single-crystal superalloy has been investigated by transmission electron microscopy (TEM). Cross-sectional TEM analyses showed the presence of precipitates in the coating. This precipitate was identified as the hexagonal topologically close-packed (TCP) μ phase with lattice parameters a = 0.473 nm and c = 2.565 nm. The energy-dispersive x-ray (EDX) spectrum of the μ phase suggested a refractory element rich compound comprising the elements Re, W, and Co. Twin domains parallel to (001) were found in the μ phase. The mechanisms of the μ phase and twinning formation were discussed.


1986 ◽  
Vol 77 ◽  
Author(s):  
B. D. Runt ◽  
N. Lewis ◽  
L. J. Schotalter ◽  
E. L. Hall ◽  
L. G. Turner

ABSTRACTEpitaxial CoSi2/Si multilayers have been grown on Si(111) substrates with up to four bilayers of suicide and Si. To our knowledge, these are the first reported epitaxial metal-semiconductor multilayer structures. The growth of these heterostructures is complicated by pinhole formation in the suicide layers and by nonuniform growth of Si over the suicide films, but these problems can be controlled through nse of proper growth techniques. CoSi2 pinhole formation has been significantly reduced by utilizing a novel solid phase epitaxy technique in which room-temperature-deposited Co/Si bilayers are annealed to 600–650δC to form the suicide layers. Islanding in the Si layers is minimized by depositing a thin (<100Å) Si layer at room temperature with subsequent high temperature growth of the remainder of the Si. Cross-sectional transmission electron microscopy studies demonstrate that these growth procedures dramatically improve the continuity and quality of the CoSi. and Si multilayers.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


2015 ◽  
Vol 48 (3) ◽  
pp. 836-843 ◽  
Author(s):  
Oindrila Mondal ◽  
Manisha Pal ◽  
Ripandeep Singh ◽  
Debasis Sen ◽  
Subhasish Mazumder ◽  
...  

The effect of dopant size (ionic radius) on the crystal growth, structure and optical properties of nanocrystalline calcium titanate, CaTiO3(CTO), have been studied using small-angle neutron scattering. X-ray diffraction, along with high-resolution transmission electron microscopy, confirms the growth of pure nanocrystalline CTO. Rietveld analysis reveals that the difference of ionic radii between dopant and host ions induces strain within the lattice, which significantly affects the lattice parameters. The induced strain, due to the difference of ionic radii, causes the shrinkage of the optical band gap, which is manifested by the redshift of the absorbance band. Mesoscopic structural analysis using scattering techniques demonstrates that the ionic radius of the dopant influences the agglomeration behaviour and particle size. A high-resolution transmission electron microscopy study reconfirms the formation of pure highly crystalline CTO nanoparticles.


1986 ◽  
Vol 76 ◽  
Author(s):  
L. Dori ◽  
M. Arienzo ◽  
Y. C. Sun ◽  
T. N. Nguyen ◽  
J. Wetzel

ABSTRACTUltrathin silicon dioxide films, 5 nm thick, were grown in a double-walled furnace at 850°C in dry O2. A consistent improvement in the electrical properties is observed following the oxidation either with a Post-Oxidation Anneal (POA) at 1000°C in N2 or with the same POA followed by a short re-oxidation (Re-Ox) step in which 1 nm of additional oxide was grown. We attribute these results to the redistribution of hydrogen and water related groups as well as to a change in the concentration of sub-oxide charge states at the Si-SiO2 interface. A further improvement observed after the short re-oxidation step had been attributed to the filling of the oxygen vacancies produced during the POA. High resolution Transmission Electron Microscopy cross-sectional observations of the Si-iSO2 interface have evidenced an increase in the interface roughness after the thermal treatment at high temperature. These results are in agreement with recent XPS data.


Sign in / Sign up

Export Citation Format

Share Document