Effects Of Damage-Impurity Interaction On Electrical Properties of Se+-Implanted GaAs

1980 ◽  
Vol 2 ◽  
Author(s):  
D. K. Sadana ◽  
J. Washburn ◽  
M. D. Strathman ◽  
G. R. Booker ◽  
M. H. Badawi

ABSTRACTInteraction of impurities with the “visible defects” in hot implanted Cr doped semi-insulating (100) GaAs has been investigated. The defects studies were performed using transmission electron microscopy (TEM) and MeV He+ channeled Rutherford backscattering. The defects distribution was obtained by 90° cross-sectional TEM (XTEM). The atomic concentration profiles of Se, and carrier-concentration and mobility profiles were obtained by secondary ion mass spectrometry (SIMS) and Hall measurements in conjunction with chemical stopping, respectively. Comparison of defects, atomic and electrical profiles, showed the formation of secondary defects at and beyond the projected range (Rp), a significant amount of Se+ diffusion beyond Rp, and compensation of electrical carriers caused mainly by the point defects present in hot implanted GaAs.

2000 ◽  
Vol 650 ◽  
Author(s):  
Te-Sheng Wang ◽  
A.G. Cullis ◽  
E.J.H. Collart ◽  
A.J. Murrell ◽  
M.A. Foad

ABSTRACTBoron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.


1989 ◽  
Vol 148 ◽  
Author(s):  
E.D. Marshall ◽  
S.S. Lau ◽  
C.J. Palmstrøm ◽  
T. Sands ◽  
C.L. Schwartz ◽  
...  

ABSTRACTAnnealed Ge/Pd/n-GaAs samples utilizing substrates with superlattice marker layers have been analyzed using high resolution backside secondary ion mass spectrometry and cross-sectional transmission electron microscopy. Interfacial compositional and microstructural changes have been correlated with changes in contact resistivity. The onset of good ohmic behavior is correlated with the decomposition of an intermediate epitaxial Pd4(GaAs,Ge2) phase and solid-phase regrowth of Ge-incorporated GaAs followed by growth of a thin Ge epitaxial layer.


1985 ◽  
Vol 63 (6) ◽  
pp. 863-869 ◽  
Author(s):  
W. Vandervorst ◽  
D. C. Houghton ◽  
F. R. Shepherd ◽  
M. L. Swanson ◽  
H. H. Plattner ◽  
...  

The residual damage left after furnace-annealing Si wafers implanted with 30-keV B+ or 120-keV [Formula: see text] ions has been investigated for doses of 3–5 × 1015 ions∙cm−2. Transmission electron microscopy, Rutherford backscattering, and channeling were used to study the morphology and distribution of the damage while the B and F content and their depth distributions were determined by nuclear reaction analysis and secondary-ion mass spectrometry. For B+-implanted samples the residual damage is concentrated in a band at a depth corresponding to the B projected range. For [Formula: see text]-implanted samples the residual damage is located mainly in the region of the as-implanted amorphous–crystalline interface.


2000 ◽  
Vol 647 ◽  
Author(s):  
Te-Sheng Wang ◽  
A.G. Cullis ◽  
E.J.H. Collart ◽  
A.J. Murrell ◽  
M.A. Foad

AbstractBoron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.


1995 ◽  
Vol 378 ◽  
Author(s):  
D. Wittorf ◽  
W. Jäger ◽  
A. Rucki ◽  
K. Urban ◽  
H.-G. Hettwer ◽  
...  

AbstractFormation of defects during Zn diffusion into undoped and Fe-doped InP single crystals at 700°C has been observed by transmission electron microscopy for various diffusion conditions. The observations are correlated with Zn concentration profiles obtained by electron microprobe measurements and secondary-ion mass spectrometry. The results allow the conclusion that indiffusing interstitial Zn can occupy In sublattice sites via a kick-out reaction. Under appropriate diffusion conditions supersaturations of In self-interstitial atoms result leading to defect formation. Observations in Fe-doped InP suggest that Zn also replaces Fe on In sublattice sites leading to redistribution and to precipitation of Fe.


2018 ◽  
Vol 24 (S1) ◽  
pp. 380-381 ◽  
Author(s):  
Santhana Eswara ◽  
Lluis Yedra ◽  
Alisa Pshenova ◽  
Varun Sarbada ◽  
Jean-Nicolas Audinot ◽  
...  

Author(s):  
В.В. Привезенцев ◽  
В.С. Куликаускас ◽  
В.А. Скуратов ◽  
О.С. Зилова ◽  
А.А. Бурмистров ◽  
...  

AbstractSingle-crystal n -Si(100) wafers are implanted with ^64Zn^+ ions with an energy of 50 keV and dose of 5 × 10^16 cm^–2. Then the samples are irradiated with ^132Xe^26+ ions with an energy of 167 MeV in the range of fluences from 1 × 10^12 to 5 × 10^14 cm^–2. The surface and cross section of the samples are visualized by scanning electron microscopy and transmission electron microscopy. The distribution of implanted Zn atoms is studied by time-of-flight secondary-ion mass spectrometry. After irradiation with Xe, surface pores and clusters consisting of a Zn–ZnO mixture are observed at the sample surface. In the amorphized subsurface Si layer, zinc and zinc-oxide phases are detected. After irradiation with Xe with a fluence of 5 × 10^14 cm^–2, no zinc or zinc-oxide clusters are detected in the samples by the methods used in the study.


2000 ◽  
Vol 622 ◽  
Author(s):  
Jacek Jasiński ◽  
Eliana Kamińska ◽  
Anna Piotrowska ◽  
Adam Barcz ◽  
Marcin Zieliński

ABSTRACTMicrostructure and thermal stability of ZrN/ZrB2 bilayer deposited on GaN have been studied using transmission electron microscopy methods (TEM) and secondary ion mass spectrometry (SIMS). It has been demonstrated that annealing of the contact structure at 1100°C in N2 atmosphere does not lead to any observable metal/semiconductor interaction. In contrast, a failure of the integrity of ZrN/ZrB2 metallization at 800°C, when the heat treatment is performed in O2 ambient has been observed.


Sign in / Sign up

Export Citation Format

Share Document