scholarly journals Изменение структуры и свойств приповерхностного слоя Si, имплантированного Zn, в зависимости от флюенса облучения ионами -=SUP=-132-=/SUP=-Xe-=SUP=-26+-=/SUP=- с энергией 167 МэВ

Author(s):  
В.В. Привезенцев ◽  
В.С. Куликаускас ◽  
В.А. Скуратов ◽  
О.С. Зилова ◽  
А.А. Бурмистров ◽  
...  

AbstractSingle-crystal n -Si(100) wafers are implanted with ^64Zn^+ ions with an energy of 50 keV and dose of 5 × 10^16 cm^–2. Then the samples are irradiated with ^132Xe^26+ ions with an energy of 167 MeV in the range of fluences from 1 × 10^12 to 5 × 10^14 cm^–2. The surface and cross section of the samples are visualized by scanning electron microscopy and transmission electron microscopy. The distribution of implanted Zn atoms is studied by time-of-flight secondary-ion mass spectrometry. After irradiation with Xe, surface pores and clusters consisting of a Zn–ZnO mixture are observed at the sample surface. In the amorphized subsurface Si layer, zinc and zinc-oxide phases are detected. After irradiation with Xe with a fluence of 5 × 10^14 cm^–2, no zinc or zinc-oxide clusters are detected in the samples by the methods used in the study.

1988 ◽  
Vol 126 ◽  
Author(s):  
J. E. Epler ◽  
F. A. Ponce ◽  
J. C. Tramontana ◽  
F. J. Endicott ◽  
T. L. Paoli

ABSTRACTRecently, a laser-scanning technique for patterning Si-induced layer disordering of GaAs-AlGaAs heterostructures has been reported. This process, called laserassisted disordering (LAD), has been successfully used to fabricate low threshold buried heterostructure lasers. In this report, the LAD process is studied in detail with scanning electron microscopy, transmission electron microscopy and secondary ion mass spectrometry. The results are discussed in the context of device fabrication.


2000 ◽  
Vol 650 ◽  
Author(s):  
Te-Sheng Wang ◽  
A.G. Cullis ◽  
E.J.H. Collart ◽  
A.J. Murrell ◽  
M.A. Foad

ABSTRACTBoron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.


2000 ◽  
Vol 622 ◽  
Author(s):  
Jacek Jasiński ◽  
Eliana Kamińska ◽  
Anna Piotrowska ◽  
Adam Barcz ◽  
Marcin Zieliński

ABSTRACTMicrostructure and thermal stability of ZrN/ZrB2 bilayer deposited on GaN have been studied using transmission electron microscopy methods (TEM) and secondary ion mass spectrometry (SIMS). It has been demonstrated that annealing of the contact structure at 1100°C in N2 atmosphere does not lead to any observable metal/semiconductor interaction. In contrast, a failure of the integrity of ZrN/ZrB2 metallization at 800°C, when the heat treatment is performed in O2 ambient has been observed.


2010 ◽  
Vol 434-435 ◽  
pp. 169-172 ◽  
Author(s):  
Wei Kong Pang ◽  
It Meng Low ◽  
J.V. Hanna

The use of secondary-ion mass spectrometry (SIMS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) to detect the existence of amorphous silica in Ti3SiC2 oxidised at 500–1000°C is described. The formation of an amorphous SiO2 layer and its growth in thickness with temperature was monitored using dynamic SIMS. Results of NMR and TEM verify for the first time the direct evidence of amorphous silica formation during the oxidation of Ti3SiC2 at 1000°C.


Sign in / Sign up

Export Citation Format

Share Document