The Creation of Misfit Dislocations; A Study of InGaAs Alloys on GaAs Substrates

1990 ◽  
Vol 202 ◽  
Author(s):  
Peter J Goodhew ◽  
Philip Kightley

ABSTRACTGrowth onto vicinal substrates causes 60° misfit dislocations to adopt line directions away from <110> in order for them to maintain their presence within the substrate to strained layer interface. Observations show that for the growth of an on-axis [001]wafer the dislocations have a line direction, within measurement error, exactly [110] or [-110] and two sets of orthogonal dislocations are generated. When grown onto a wafer that is cut off-axis toward [010] four sets of dislocations are generated. The two sets of dislocations in each direction converge to form low angle intersections from which edge dislocations are formed. These edge dislocations can become very long by the glide out of the interface plane of the component 60° dislocations. This ‘zipping-up’ to form the edge components only occurs in one direction from the low angle point of intersection and the edge segments are exclusively generated in the buffer layer. Their density and penetration are a function of thickness and composition of the mismatched epilayer. The mechanisms by which the dislocations adopt line directions away from <110> and why they zip-up from the intersection in only one direction are discussed.

1987 ◽  
Vol 91 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
E.R. Weber ◽  
J. Washburn ◽  
T.Y. Liu ◽  
H. Kroemer

ABSTRACTGallium arsenide films grown on (211)Si by molecular-beam epitaxy have been investigated using transmission electron microscopy. The main defects observed in the alloy were of misfit dislocations, stacking faults, and microtwin lamellas. Silicon surface preparation was found to play an important role on the density of defects formed at the Si/GaAs interface.Two different types of strained-layer superlattices, InGaAs/InGaP and InGaAs/GaAs, were applied either directly to the Si substrate, to a graded layer (GaP-InGaP), or to a GaAs buffer layer to stop the defect propagation into the GaAs films. Applying InGaAs/GaAs instead of InGaAs/InGaP was found to be more effective in blocking defect propagation. In all cases of strained-layer superlattices investigated, dislocation propagation was stopped primarily at the top interface between the superlattice package and GaAs. Graded layers and unstrained AlGaAs/GaAs superlattices did not significantly block dislocations propagating from the interface with Si. Growing of a 50 nm GaAs buffer layer at 505°C followed by 10 strained-layer superlattices of InGaAs/GaAs (5 nm each) resulted in the lowest dislocation density in the GaAs layer (∼;5×l07/cm2) among the structures investigated. This value is comparable to the recently reported density of dislocations in the GaAs layers grown on (100)Si substrates [8]. Applying three sets of the same strained layersdecreased the density of dislocations an additional ∼2/3 times.


1989 ◽  
Vol 161 ◽  
Author(s):  
H. Oniyama ◽  
S. Yamaga ◽  
A. Yoshikawa

ABSTRACTThis paper describes the results of the first attempt to reduce misfit dislocations in epilayers of a wide bandgap II-VI semiconductor on GaAs substrates by utilizing the ZnSe-ZnS strained-layer superlattice (SLS) structure. From a theoretical calculation, SLSs consisting of a 200A-ZnSe and a IOA-ZnS layer in one period can be grown as lattice-matched films to GaAs substrates. It has been found from the photoluminescence measurements and electron-beam-induced-current (EBIC) image observations that the generation of misfit dislocations can be markedly reduced, as expected.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
J.M. Bonar ◽  
R. Hull ◽  
R. Malik ◽  
R. Ryan ◽  
J.F. Walker

In this study we have examined a series of strained heteropeitaxial GaAs/InGaAs/GaAs and InGaAs/GaAs structures, both on (001) GaAs substrates. These heterostructures are potentially very interesting from a device standpoint because of improved band gap properties (InAs has a much smaller band gap than GaAs so there is a large band offset at the InGaAs/GaAs interface), and because of the much higher mobility of InAs. However, there is a 7.2% lattice mismatch between InAs and GaAs, so an InxGa1-xAs layer in a GaAs structure with even relatively low x will have a large amount of strain, and misfit dislocations are expected to form above some critical thickness. We attempt here to correlate the effect of misfit dislocations on the electronic properties of this material.The samples we examined consisted of 200Å InxGa1-xAs layered in a hetero-junction bipolar transistor (HBT) structure (InxGa1-xAs on top of a (001) GaAs buffer, followed by more GaAs, then a layer of AlGaAs and a GaAs cap), and a series consisting of a 200Å layer of InxGa1-xAs on a (001) GaAs substrate.


1999 ◽  
Vol 562 ◽  
Author(s):  
K. Attenborough ◽  
M. Cerisier ◽  
H. Boeve ◽  
J. De Boeck ◽  
G. Borghs ◽  
...  

ABSTRACTWe have studied the magnetic and structural properties of thin electrodeposited Co and Cu layers grown directly onto (100) n-GaAs and have investigated the influence of a buffer layer. A dominant fourfold anisotropy with a uniaxial contribution is observed in 10 nm Co electrodeposited films on GaAs. An easy axis is observed in the [001] GaAs direction with two hard axes of differing coercivities parallel to the [011] and [011] directions. For thicker films the easy axes in the [001] direction becomes less pronounced and the fourfold anisotropy becomes less dominant. Co films of similar thicknesses deposited onto an electrodeposited Cu buffer layer were nearly isotropic. From X-ray diffraction 21 nm Co layers on GaAs were found to be hcp with the c-axis tending to be in the plane of the film. The anisotropy is ascribed to the Co/GaAs interface and is held responsible for the unique spin-valve properties seen recently in electrodeposited Co/Cu films.


2018 ◽  
Vol 52 (12) ◽  
pp. 1564-1567
Author(s):  
I. V. Samartsev ◽  
S. M. Nekorkin ◽  
B. N. Zvonkov ◽  
V. Ya. Aleshkin ◽  
A. A. Dubinov ◽  
...  

2005 ◽  
Vol 891 ◽  
Author(s):  
John Tolle ◽  
Radek Roucka ◽  
Vijay D'Costa ◽  
Jose Menendez ◽  
Andrew Chizmeshya ◽  
...  

ABSTRACTWe report growth and properties of GeSn and SiGeSn alloys on Si (100). These materials are prepared using a novel CVD approach based on reactions of Si-Ge hydrides and SnD4. High quality GeSn films with Sn contents up to 20%, and strain free microstructures have been obtained. The lattice mismatch between the films and Si is relieved by Lomer edge dislocations located at the interface. This material is of interest due to the predicted cross-over to a direct gap semiconductor for moderate Sn concentrations. We find that the direct band gap, and, consequently, the main absorption edge, shifts monotonically to lower energies as the Sn concentration is increased. The compositional dependence of the direct band gap shows a strong bowing, such that the direct band gap is reduced to 0.4 eV (from 0.8 eV for pure Ge) for a concentration of 14% Sn. The ternary SiGeSn alloy has been grown for the first time on GeSn buffer layers. This material opens up entirely new opportunities for strain and band gap engineering using group-IV materials via decoupling of strain and composition. Our SiGeSn layers have lattice constants above and below that of pure Ge, and depending on the thickness and composition of the underlying buffer layer they can be grown relaxed, with compressive, or with tensile strain. In addition to acting as a buffer layer for the growth of SiGeSn, we have found that GeSn can act as a template for the subsequent growth of a variety of materials, including III-V semiconductors.


Sign in / Sign up

Export Citation Format

Share Document