Parametric Investigation of Rock Salt Behaviour Resulting from Disposal of High Level Radioactive Waste

1990 ◽  
Vol 212 ◽  
Author(s):  
D. Caramelle ◽  
M.T. Gaudez ◽  
J. Monig ◽  
G. Ouzounian ◽  
G. Simonet

ABSTRACTThe liberation and generation of gases from rock salt due to heat and gamma irradiation is investigated in order to obtain some of the data needed for the development of the concept for the disposal of high level waste in rock salt.Our work is concerned with the influence of various parameters on gas production, e.g. salt composition and grain size, total absorbed dose, dose rate, temperature and gas atmosphere. Some of these parameters have not been studied previously in detail.The original gamma irradiator employing spent fuel elements and capable of exposing samples at temperatures up to 250°C will be described. Experimental results from some 150 experiments will be given. The two major gases found were CO2 and N2O.CO, H2, CH4, Hydrocarbons, CI2, HCl and SO2 were also detected. The dependence of the gas yields on the various parameters will be presented and discussed.

2016 ◽  
Vol 722 ◽  
pp. 59-65
Author(s):  
Markéta Kočová ◽  
Zdeňka Říhová ◽  
Jan Zatloukal

Nowadays manipulation and depositing of high-level radioactive waste has become the most important issue, which needs to be solved. High-level radioactive waste consists mainly of spent fuel elements from nuclear power plants, which cannot be deposited for long time in surface repositories in the same way as it is possible in case of low and medium level radioactive waste. The most effective and safe solution in longer time horizon seems to be deep geological repository of high level waste. In this process of deposition, large amount of specific conditions needs to be taken into account while designing the whole underground complex, because the materials and structures must fulfil all necessary requirements. Then adequate safety will be ensured.


1988 ◽  
Vol 127 ◽  
Author(s):  
Norbert Jockwer ◽  
Jörg Monig

ABSTRACTSalt samples of two different mineralogical compositions were subjected to 60Co-γ-irradiation under an air-atmosphere. The resulting gaseous products were analysed from the gas phase above the salt. Additionally, the salt was subsequently heated up to 300 °C in order to liberate adsorbed, less volatile, and polar compounds. The gases CO2, CO, N2O, H2S, SO2, and Cl2 were identified whereas H2 was notably absent. The influence of various parameters, i. e. the total absorbed dose, the dose rate, and the temperature, on the radiolytic gas production was studied in some detail, increasing dose leads to increasing yields in CO2 and N2O. Carbon monoxide is radiolytically destroyed. Since CO2 and CO occur naturally in rock salt, they desorb thermally to some extent during the irradiation. The dose rate does not affect the yields, while the temperature during irradiation has a big effect on the radiolytic CO2 yields. At 250 °C and a radiation dose of 1×106 Gy a maximum CO2 yield of 70 mg gas per kg irradiated salt was observed. Upon heating the sample to 300 °C for 30 min. 47 mg per kg salt are additionally released.


1983 ◽  
Vol 26 ◽  
Author(s):  
P. W. Levy ◽  
J. A. Kierstead

ABSTRACTVery rough estimates have been made of the total amount, the formation rate and spatial distribution of the Na metal colloid particles induced in rock salt adjacent to four types of radioactive waste canisters. A number of extrapolations were required. Salt immediately adjacent to a lightly shielded, 2.16 kW, high level waste canister could be converted entirely to colloidal Na (and presumably chlorine gas) in 200-400 years. The total Na metal formed will be 250-300 kg. A heavily shielded, 3.3 kW, spent fuel canister will convert roughly 0.3 percent of the salt at the canister surface to colloidal Na and the total sodium metal will be roughly 0.5 kg. Even at the lowest colloid levels the Na metal formed should greatly influence interactions between canisters and the surrounding salt, particularly if brine enters.


Author(s):  
Sidik Permana ◽  
Mitsutoshi Suzuki

The embodied challenges for introducing closed fuel cycle are utilizing advanced fuel reprocessing and fabrication facilities as well as nuclear nonproliferation aspect. Optimization target of advanced reactor design should be maintained properly to obtain high performance of safety, fuel breeding and reducing some long-lived and high level radioactivity of spent fuel by closed fuel cycle options. In this paper, the contribution of loading trans-uranium to the core performance, fuel production, and reduction of minor actinide in high level waste (HLW) have been investigated during reactor operation of large fast breeder reactor (FBR). Excess reactivity can be reduced by loading some minor actinide in the core which affect to the increase of fuel breeding capability, however, some small reduction values of breeding capability are obtained when minor actinides are loaded in the blanket regions. As a total composition, MA compositions are reduced by increasing operation time. Relatively smaller reduction value was obtained at end of operation by blanket regions (9%) than core regions (15%). In addition, adopting closed cycle of MA obtains better intrinsic aspect of nuclear nonproliferation based on the increase of even mass plutonium in the isotopic plutonium composition.


1986 ◽  
Vol 84 ◽  
Author(s):  
V. M. Oversby

AbstractPerformance assessment calculations are required for high level waste repositories for a period of 10,000 years under NRC and EPA regulations. In addition, the Siting Guidelines (IOCFR960) require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. In order to perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. While bounding calculations might be sufficient to show compliance with the requirements of IOCFR60 and 40CFRI91, the site comparison for 100,000 years will need to be based on expected performance under site specific conditions. The only case where detailed knowledge of waste form characteristics in the repository would not be needed would be where radionuclide travel times to the accessible environment can be shown to exceed 100,000 years. This paper will review the factors that affect the release of radionuclides from spemt fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed in order to support the performance assessment calculations.


2003 ◽  
Vol 807 ◽  
Author(s):  
Paul Wersin ◽  
Lawrence H. Johnson ◽  
Bernhard Schwyn

ABSTRACTRedox conditions were assessed for a spent fuel and high-level waste (SF/HLW) and an intermediate-level waste (ILW) repository. For both cases our analysis indicates permanently reducing conditions after a relatively short oxic period. The canister-bentonite near field in the HLW case displays a high redox buffering capacity because of expected high activity of dissolved and surface-bound Fe(II). This is contrary to the cementitious near field in the ILW case where concentrations of dissolved reduced species are low and redox reactions occur primarily via solid phase transformation processes.For the bentonite-canister near field, redox potentials of about -100 to -300 mV (SHE) are estimated, which is supported by recent kinetic data on U, Tc and Se interaction with reduced iron systems. For the cementitious near field, redox potentials of about -200 to -800 mV are estimated, which reflects the large uncertainties related to this alkaline environment.


Author(s):  
Richard E. Andrews

Abstract Sweden has chosen to manage spent fuel rods by direct encapsulation and storage in a deep level repository. Two welding processes are being investigated for the sealing of copper vessels that form the outer barrier of the disposal canisters. TWI Ltd in the UK has developed Reduced Pressure Electron Beam Welding and Friction Stir Welding for 50mm thick copper. This paper describes some of the investigations and compares the techniques. Over the past 3 years a full-size canister welding machine has been designed and built. Specialised tools have been developed for the welding of thick sections in copper with very encouraging results.


Author(s):  
H. Geiser ◽  
J. Schro¨der

The idea of using casks for interim storage of spent fuel arose at GNS after a very controversial political discussion in 1978, when total passive safety features (including aircraft crash conditions) were required for an above ground spent fuel storage facility. In the meantime, GNS has loaded more than 1000 casks at 25 different storage sites in Germany. GNS cask technology is used in 13 countries. Spent fuel assemblies of PWR, BWR, VVER, RBMK, MTR and THTR as well as vitrified high level waste containers are stored in full metal casks of the CASTOR® type. Also MOX fuel of PWR and BWR has been stored. More than two decades of storage have shown that the basic requirements (safe confinement, criticality safety, sufficient shielding and appropriate heat transfer) have been fulfilled in any case — during normal operation and in case of severe accidents, including aircraft crash. There is no indication of problems arising in the future. Of course, the experience of more than 20 years has resulted in improvements of the cask design. The CASTOR® casks have been thoroughly investigated by many experiments. There have been approx. 50 full and half scale drop tests and a significant number of fire tests, simulations of aircraft crash, investigations with anti tank weapons, and an explosion of a railway tank with liquid gas neighbouring a loaded CASTOR® cask. According to customer and site specific demands, different types of storage facilities are realized in Germany. Firstly, there are facilities for long-term storage, such as large ventilated central storage buildings away from reactor or ventilated storage buildings at the reactor site, ventilated underground tunnels or concrete platforms outside a building. Secondly, there are facilities for temporary storage, where casks have been positioned in horizontal orientation under a ventilated shielding cover outside a building.


Sign in / Sign up

Export Citation Format

Share Document